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Overview

Introduction / M2CR project
Multi30k: a multilingual multimodal corpus
Neural Machine Translation
Dealing with images
Multimodal MT

L. Barrault (LIUM, Le Mans Université) April 10, 2018 2 / 49



M2CR project

Create a unified framework to learn a shared space
Represent (encode) various modalities
Decode from it towards any other language or modality.

Input datum

Encoders

Continuous
representation

Decoders

Outputs "Un gato bonito"

Text Audio Visual

Text Audio Visual

"Eine schöne Katze"
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Motivation

Semantics still poorly used in MT systems
Embeddings seem to convey such information

Can meaning be modelled from text only?
Can’t learn everything from books!

→ Language grounding
→ Use of multiple modalities

Intermediate step: use visual information to disambiguate translation
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Example 1: morphology

A baseball player in a black shirt just
tagged a player in a white shirt.

Un joueur de baseball en maillot noir
vient de toucher un joueur en maillot
blanc.
Une joueuse de baseball en maillot noir
vient de toucher une joueuse en maillot
blanc.
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Example 2: semantics

A woman sitting on a very large rock smiling
at the camera with trees in the background.

Eine Frau sitzt vor Bäumen im Hintergrund
auf einem sehr großen Felsen und lächelt in
die Kamera.

Felsen == stone (uncountable)

Eine Frau sitzt vor Bäumen im Hintergrund
auf einem sehr großen Stein und lächelt in
die Kamera.

Stein == rock (individual stone)
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multi30k

Multi30k: Multimodal Multilingual Corpus
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multi30k

Multi30k

Extension of Flickr30k corpus [Plummer et al., 2017]
Flickr30k: images from Flickr with crowdsourced English descriptions
Multi30k: translating English descriptions into German

→ context of Multimodal Machine Translation (MMT’16)
MMT’17: add French translations
MMT’18: add Czech translations

http://www.statmt.org/wmt18/multimodal-task.html
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multi30k

Multi30k: example

Descriptions
EN: A ballet class of five girls jumping in sequence.
DE: Eine Ballettklasse mit fünf Mädchen, die nacheinander springen.
FR: Une classe de ballet, composée de cinq filles, sautent en cadence.
CS: Baletní třída pěti dívek skákající v řadě.
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multi30k

Multi30k: statistics

Corpus #sents. #w. EN #w. DE #w. FR #w. CS

Train 29k 345.0k 322.4k 362.0k 262.5k
Val 1014 12.2k 11.6k 12.7k 9.1k

Test2016 1000 11.9k 10.9k 12.3k 9.3k
Test2017 1000 10.5 9.6k 11.2k -

Total 32k 379.6k 354.5k 398.3k 280.9k
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multi30k

Multi30k: some comments

Descriptions are simple
A man ..., A woman ...,

Ongoing:
Create more complex examples
Visual information should be required to translate the source sentence

→ more ambiguity
→ complex to collect
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multi30k

Neural Machine Translation
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multi30k

Neural Machine Translation

Decoder with
Attention

Text
Encoder

Annotation 
Vectors

Source 
words

Target 
words

[Bahdanau et al., 2014]
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multi30k

Bidirectional Encoder

Previous work → fixed size vector is not be enough to represent a sentence
→ let’s use several representations + process the sentence in both directions!

wi

ci

A long time ago in a galaxy far far, away

BID
IR

EC
T
IO

N
AL

EN
C
O
D
ER

[1.] 1-hot vector + projection + update forward RNN hidden state
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multi30k

Bidirectional Encoder

Previous work → fixed size vector is not be enough to represent a sentence
→ let’s use several representations + process the sentence in both directions!

wi

ci

hi

A long time ago in a galaxy far far, away

BID
IR

EC
T
IO

N
AL

EN
C
O
D
ER

Annotation

[2.] Annotation = concatenation of forward and backward vectors
Every hi encodes the whole source sentence with a focus on the i th word
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multi30k

Decoder with attention

[2.] Decoder gets the annotations.

[3.] Attention weights are computed
with feedforward NN.
→ weighted mean h̃j =

∑
i

αijhi

[4.] Update hidden state of GRU
[5.] Probability distribution for all words
[6.] Generate next word
→ most probable or beam
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multi30k

Decoder with attention
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multi30k

Decoder with attention
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multi30k

Decoder with attention
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multi30k

Decoder with attention
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multi30k

Decoder with attention
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multi30k

Decoder with attention
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Multimodal Neural Machine Translation
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multimodal

Related work

Re-ranking of MT hypotheses with fixed-size visual vectors
[Caglayan et al., 2016a, Shah et al., 2016]
Fixed-size vector integration into source and/or target
→ Prepending and/or appending visual vectors to source sequence [Huang et al., 2016]
→ Decoder initialization [Calixto et al., 2016]
→ Encoder/decoder initialization, multiplicative interaction schemes

[Caglayan et al., 2017, Delbrouck and Dupont, 2017]
→ ImageNet class probability vector as a feature [Madhyastha et al., 2017]
→ Prediction of visual vectors as an auxiliary task [Elliott and Kádár, 2017]

Multimodal Attention
→ Shared attention [Caglayan et al., 2016a]
→ Separate attention

[Calixto et al., 2016, Caglayan et al., 2016b, Libovický and Helcl, 2017]
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multimodal

Overview

Two approaches will be considered today:

Fusion of multiple modalities with attention
→ Combine image captioning and NMT

Conditioning over a fixed size image vector
→ Integrate visual information at different places in the network
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multimodal

Merging textual and visual information with attention

Decoder with
Multimodal
Attention

Text
Encoder

Image

Visual Encoder 
(CNN)

Under review as a conference paper at ICLR 2016

CNN RNN

children sitting
in a classroom

+ RNN

Schulkinder sitzen
in einem Klassenzimmer

Figure 1: An illustration of the multilingual multimodal language model. Descriptions are generated
by combining features from source- and target-language multimodal language models. The dashed
lines denote variants of the model: removing the CNN features from a source model would create
language-only conditioning vectors; whereas removing the CNN input in the decoder assumes the
source feature vectors know enough about the image to generate a good description.

picts the overall approach, illustrating the way we transfer feature representations between models.
Image description models generally use a fixed representation of the visual input taken from a object
detection model (e.g., a CNN). In this work we add fixed features extracted from a source language
model (which may itself be a multimodal image description model) to our image description model.
This is distinct from neural machine translation models which train source language feature repre-
sentations specifically for target decoding in a joint model (Cho et al., 2014; Sutskever et al., 2014).
Our composite model pipeline is more flexible than a joint model, allowing the reuse of models for
other tasks (e.g., monolingual image description, object recognition) and not requiring retraining
for each different language pair. We show that the representations extracted from source language
models, despite not being trained to translate between languages, are nevertheless highly successful
in transferring additional informative features to the target language image description model.

In a series of experiments on the IAPR-TC12 dataset of images described in English and German,
we find that models that incorporate source language features substantially outperform target mono-
lingual image description models. The best English-languagemodel improves upon the state-of-the-
art by 2.3 BLEU4 points for this dataset. In the first results reported on German image description,
our model achieves a 8.8 Meteor point improvement compared to a monolingual image description
baseline. The implication is that linguistic and visual features offer orthogonal improvements in
multimodal modelling (a point also made by Silberer & Lapata (2014) and Kiela & Bottou (2014)).
The models that include visual features also improve over our translation baselines, although to
a lesser extent; we attribute this to the dataset being exact translations rather than independently
elicited descriptions, leading to high performance for the translation baseline. Our analyses show
that the additional features improve mainly lower-quality sentences, indicating that our best models
successfully combine multiple noisy input modalities.

2 MODELS

Our multilingual image description models are neural sequence generation models, with additional
inputs from either visual or linguistic modalities, or both. We present a family of models in sequence
of increasing complexity to make their compositional character clear, beginning with a neural se-
quence model over words and concluding with the full model using both image and source features.
See Figure 2 for a depiction of the model architecture.

2.1 RECURRENT LANGUAGE MODEL (LM)

The core of our model is a Recurrent Neural Network model over word sequences, i.e., a neural
language model (LM) (Mikolov et al., 2010). The model is trained to predict the next word in the
sequence, given the current sequence seen so far. At each timestep i for input sequence w0...n,
the input word wi, represented as a one-hot vector over the vocabulary, is embedded into a high-
dimensional continuous vector using the learned embedding matrixWeh (Eqn 1). A nonlinear func-
tion f is applied to the embedding combined with the previous hidden state to generate the hidden
state hi (Eqn 2). At the output layer, the next word oi is predicted via the softmax function over the

2

Feature 
Maps

Annotation 
Vectors

Source 
words

Target 
words
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multimodal

Very deep CNN: Residual Networks
7x

7 
co

nv
, 6

4/
2

1x
1 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

1x
1 

co
nv

, 2
56

1x
1 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

1x
1 

co
nv

, 2
56

1x
1 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

1x
1 

co
nv

, 2
56

1x
1 

co
nv

, 1
28

/2
3x

3 
co

nv
, 1

28
1x

1 
co

nv
, 5

12

1x
1 

co
nv

, 1
28

3x
3 

co
nv

, 1
28

1x
2 

co
nv

, 5
12

1x
1 

co
nv

, 1
28

3x
3 

co
nv

, 1
28

1x
2 

co
nv

, 5
12

1x
1 

co
nv

, 2
56

/2
3x

3 
co

nv
, 2

56
1x

1 
co

nv
, 1

02
4

1x
1 

co
nv

, 2
56

3x
3 

co
nv

, 2
56

1x
2 

co
nv

, 1
02

4

1x
1 

co
nv

, 2
56

3x
3 

co
nv

, 2
56

1x
2 

co
nv

, 1
02

4

1x
1 

co
nv

, 5
12

/2
3x

3 
co

nv
, 5

12
1x

1 
co

nv
, 2

04
8

1x
1 

co
nv

, 5
12

3x
3 

co
nv

, 5
12

1x
2 

co
nv

, 2
04

8

1x
1 

co
nv

, 5
12

3x
3 

co
nv

, 5
12

1x
2 

co
nv

, 2
04

8

fc
, 1

00
0

... ......{ { { {

Blocks 0 Blocks 1 Blocks 2 Blocks 3

Si
ze

: 1
12

Si
ze

: 5
6

Si
ze

: 2
8

Si
ze

: 1
4

Si
ze

: 7

m
ax

po
ol

 /2

av
gp

oo
l /

2

Different configurations:
50 layers [3,4,6,3]
101 layers [3,4,23,8]
152 layers [3,8,36,3]

For Multimodal Machine Translation
Use convolutional feature maps
Use a fixed size representation (final average pooled activations)
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multimodal

Image captioning

Show, Attend and Tell, [Xu et al., 2015]
→ Image encoded with a CNN, LSTM decoder with attention

Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention

Kelvin Xu KELVIN.XU@UMONTREAL.CA
Jimmy Lei Ba JIMMY@PSI.UTORONTO.CA
Ryan Kiros RKIROS@CS.TORONTO.EDU
Kyunghyun Cho KYUNGHYUN.CHO@UMONTREAL.CA
Aaron Courville AARON.COURVILLE@UMONTREAL.CA
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
Richard S. Zemel ZEMEL@CS.TORONTO.EDU
Yoshua Bengio FIND-ME@THE.WEB

Abstract

Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
stochastically by maximizing a variational lower
bound. We also show through visualization how
the model is able to automatically learn to fix its
gaze on salient objects while generating the cor-
responding words in the output sequence. We
validate the use of attention with state-of-the-
art performance on three benchmark datasets:
Flickr8k, Flickr30k and MS COCO.

1. Introduction
Automatically generating captions of an image is a task
very close to the heart of scene understanding — one of the
primary goals of computer vision. Not only must caption
generation models be powerful enough to solve the com-
puter vision challenges of determining which objects are in
an image, but they must also be capable of capturing and
expressing their relationships in a natural language. For
this reason, caption generation has long been viewed as
a difficult problem. It is a very important challenge for
machine learning algorithms, as it amounts to mimicking
the remarkable human ability to compress huge amounts of
salient visual infomation into descriptive language.

Despite the challenging nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in training
neural networks (Krizhevsky et al., 2012) and large clas-
sification datasets (Russakovsky et al., 2014), recent work

Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in section 3.1 & 5.4

1. Input 
    Image

2. Convolutional
Feature Extraction

3. RNN with attention

LSTM

4. Word by 
word

14x14 Feature Map

over the image
generation

A
bird 
flying 
over 
a 
body 
of 
water 

has significantly improved the quality of caption genera-
tion using a combination of convolutional neural networks
(convnets) to obtain vectorial representation of images and
recurrent neural networks to decode those representations
into natural language sentences (see Sec. 2).

One of the most curious facets of the human visual sys-
tem is the presence of attention (Rensink, 2000; Corbetta &
Shulman, 2002). Rather than compress an entire image into
a static representation, attention allows for salient features
to dynamically come to the forefront as needed. This is
especially important when there is a lot of clutter in an im-
age. Using representations (such as those from the top layer
of a convnet) that distill information in image down to the
most salient objects is one effective solution that has been
widely adopted in previous work. Unfortunately, this has
one potential drawback of losing information which could
be useful for richer, more descriptive captions. Using more
low-level representation can help preserve this information.
However working with these features necessitates a power-
ful mechanism to steer the model to information important
to the task at hand.

In this paper, we describe approaches to caption genera-
tion that attempt to incorporate a form of attention with
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multimodal

Image captioning: example

Image captioning [Xu et al., 2015]

Neural Image Caption Generation with Visual Attention

(a) A stop sign with a stop sign on it.

(b) A stop sign is on a road with a mountain in the background.

Figure 10.
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Multimodal NMT

MNMT: attention over text and image
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Multimodal NMT

MNMT: attention mechanism

zj

hi
Annotation

linuattWCatt

Watt

tanh eij

ATTENTION
MECHANISM
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Multimodal attention

Attention Type Validation Scores

Model Fusion Modality Decoder METEOR BLEU CIDEr-D

NMT - - - 34.24 (35.59) 18.64 (21.62) 58.57 (67.93)
IMGTXT - - - 26.80 11.16 31.28

MNMT1 SUM IND IND 33.23 (35.42) 18.30 (21.24) 55.45 (65.03)
MNMT2 SUM IND DEP 34.17 (35.48) 17.70 (20.70) 53.78 (61.76)
MNMT3 SUM DEP IND 34.38 (35.55) 18.42 (20.94) 55.81 (63.37)
MNMT4 SUM DEP DEP 33.67 (34.57) 17.83 (20.30) 52.68 (59.63)

MNMT5 CONCAT IND IND 33.31 (34.98) 17.50 (20.60) 53.57 (61.46)
MNMT6 CONCAT IND DEP 35.23 (36.79) 19.30 (22.45) 60.62 (69.96)
MNMT7 CONCAT DEP IND 35.11 (37.13) 19.72⇤ (23.24) 61.04 (72.16)
MNMT8 CONCAT DEP DEP 34.80 (36.98) 19.55 (22.78) 60.20 (70.20)

Table 2: The results for the first validation split and the best source selection (between parentheses). All
scores are averages of two runs. * First validation split BLEU for MNMT7 is significantly better than
NMT baseline with p < 0.05.

stochastic gradient descent variant with a mini-
batch size of 32. The weights of the networks are
initialized using Xavier scheme (Glorot and Ben-
gio, 2010) while the biases are initially set to 0. L2
regularization with � = 0.00001 is applied to the
training cost to avoid overfitting.

The performance of the networks is evaluated
on the first validation split using BLEU (Papineni
et al., 2002) at the end of each epoch and the train-
ing is stopped if BLEU does not improve for 20
evaluation periods.

A classical left to right beam-search with a
beam size of 12 is used for all models during sen-
tence generation. Besides evaluating performance
on the first validation split, we also experimented
with a best source selection strategy where for
each image we obtain 5 German hypotheses that
correspond to 5 English descriptions and pick the
one with the highest log-likelihood and the least
number of UNK tokens.

6 Results

6.1 Quantitative Analysis
The description generation performance of the
models is presented in Table 2 using BLEU, ME-
TEOR (Lavie and Agarwal, 2007) and CIDEr-D
(Vedantam et al., 2015) as automatic evaluation
metrics. We also performed a paired bootstrap re-
sampling3 (Koehn, 2004) for the BLEU metric to
assess the statistical significance of the presented
results on the first validation split.

3http://www.cs.cmu.edu/˜ark/MT

It is clear from Table 2 that MNMT with CON-
CAT as the fusion operator improves over both
the NMT and the IMGTXT baselines when com-
bined with modality-dependent attention mecha-
nism (MNMT 6 to 8). The results are slightly
worse than the NMT baseline regardless of the
multimodal attention type when the fusion is re-
alized with the SUM operator. This difference can
be attributed to the fact that concatenation makes
use of a linear layer that learns how to integrate the
modality-specific activations into the multimodal
context vector.

The improvement in terms of the automatic
metrics is more significant with the best source
selection strategy compared to the first valida-
tion split. The reason for this is that the first
split contains source sentences which are much
longer and detailed than the target ones: 18.35
words/sentence in average on the source side com-
pared to 8.03 words/sentence on the target side.
Once we use the best source selection method, the
models compensate for this discrepancy by choos-
ing source sentences of different lengths (in aver-
age ⇠13 words/sentence).

We observe that a completely independent
(shared) attention mechanism (MNMT5) has the
worst performance among all CONCAT variants.
This empirical evidence is on par with our initial
statement that a single shared attention may not be
the optimal approach in the case of different input
modalities. We also notice that once a dependency
be it on the encoder or the decoder side is estab-
lished in the topology, the performance improves

[Caglayan et al., 2016b]
CONCAT is better
Separate attention is better ( 6= multilingual, [Firat et al., 2017])
Better results than standard NMT, but . . .
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Multimodal attention

Image attention not satisfying, possible causes:
sequence length mismatch
encoder is pre-trained on ImageNet and never updated

Text attention is good
encoder is jointly trained with the decoder

MMT task:
words contain more specific information than image
image is far more ambiguous

Attention mechanism is not powerful enough to attend both text and image (?).
remove attention over the image
integrate fixed size vector from image and condition NMT with it.
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Integrating visual information at different places in the NMT system

Integrating fixed size vector: so-called pool5 vector
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Integrating visual information at different places in the NMT system

Integrating fixed size vector as visual information [Caglayan et al., 2017]

Decoderh
0Encoder h

0

Source Embeddings

V
Target Embeddings

Source Annotations

*

*

dec-init

encdec-init

ctx-mul
trg-mul

decinit-ctx-trg-mul
* Element-wise Multiplication

L. Barrault (LIUM, Le Mans Université) April 10, 2018 32 / 49



multimodal

Multimodal Machine Translation campaign (MMT’17)

EN →DE: multiplicative interaction with target embeddings is (marginally) better

LIUM-CVC Submissions for WMT17 Multimodal Translation Task
Ozan Caglayan, Walid Aransa, Adrien Bardet, Mercedes Garćıa-Mart́ınez, Fethi Bougares and Löıc Barrault

LIUM - Le Mans University

Marc Masana, Luis Herranz and Joost van de Weijer
CVC - Universitat Autonoma de Barcelona

Summary

• Monomodal and multimodal Neural Machine Translation (NMT) systems from LIUM
& CVC for En!De and En!Fr.

• Our pool5-enhanced Multimodal NMT systems ranked first for both language pairs
according to BLEU/METEOR.

• Significantly smaller models with ⇠5M parameters.

Dataset & Training

• Dataset: Multi30k with 29K training image-caption pairs + BPE-10K.

• Image Features from ResNet-50 trained on ImageNet:

– 2048-dimensional global features from the pool5 layer,

– 14x14x1024 spatial features from the res4f relu layer.

• Software: NMTPy - each model trained with 5 seeds.

• Early-stopping on METEOR, Xavier weight initialization, gradient clip @ 5, Adam
with learning rate 4e-4, L2 regularization, Dropout after source embeddings, source
annotations and pre-softmax activations.

Baseline NMT

• Bi-directional GRU encoder with layer normalization, Bahdanau-style attention and
Conditional GRU (CGRU) decoder initialized using average source annotation.

• Embeddings and GRU layers are of size 128 and 256 respectively.

• Target probability distribution is conditioned on the previous token embedding, the
hidden state of the CGRU and the context vector:

P (yt|yt�1,eht, ct) = softmax
⇣
Wo tanh

⇣
We yt�1 + Wd

eht + Wc ct

⌘⌘

MNMT with Spatial Features (fusion-conv)

Decoder with
Multimodal
Attention

Textual
Encoder

Image

Visual Encoder 
(CNN)

Under review as a conference paper at ICLR 2016

CNN RNN

children sitting
in a classroom

+ RNN

Schulkinder sitzen
in einem Klassenzimmer

Figure 1: An illustration of the multilingual multimodal language model. Descriptions are generated
by combining features from source- and target-language multimodal language models. The dashed
lines denote variants of the model: removing the CNN features from a source model would create
language-only conditioning vectors; whereas removing the CNN input in the decoder assumes the
source feature vectors know enough about the image to generate a good description.

picts the overall approach, illustrating the way we transfer feature representations between models.
Image description models generally use a fixed representation of the visual input taken from a object
detection model (e.g., a CNN). In this work we add fixed features extracted from a source language
model (which may itself be a multimodal image description model) to our image description model.
This is distinct from neural machine translation models which train source language feature repre-
sentations specifically for target decoding in a joint model (Cho et al., 2014; Sutskever et al., 2014).
Our composite model pipeline is more flexible than a joint model, allowing the reuse of models for
other tasks (e.g., monolingual image description, object recognition) and not requiring retraining
for each different language pair. We show that the representations extracted from source language
models, despite not being trained to translate between languages, are nevertheless highly successful
in transferring additional informative features to the target language image description model.

In a series of experiments on the IAPR-TC12 dataset of images described in English and German,
we find that models that incorporate source language features substantially outperform target mono-
lingual image description models. The best English-languagemodel improves upon the state-of-the-
art by 2.3 BLEU4 points for this dataset. In the first results reported on German image description,
our model achieves a 8.8 Meteor point improvement compared to a monolingual image description
baseline. The implication is that linguistic and visual features offer orthogonal improvements in
multimodal modelling (a point also made by Silberer & Lapata (2014) and Kiela & Bottou (2014)).
The models that include visual features also improve over our translation baselines, although to
a lesser extent; we attribute this to the dataset being exact translations rather than independently
elicited descriptions, leading to high performance for the translation baseline. Our analyses show
that the additional features improve mainly lower-quality sentences, indicating that our best models
successfully combine multiple noisy input modalities.

2 MODELS

Our multilingual image description models are neural sequence generation models, with additional
inputs from either visual or linguistic modalities, or both. We present a family of models in sequence
of increasing complexity to make their compositional character clear, beginning with a neural se-
quence model over words and concluding with the full model using both image and source features.
See Figure 2 for a depiction of the model architecture.

2.1 RECURRENT LANGUAGE MODEL (LM)

The core of our model is a Recurrent Neural Network model over word sequences, i.e., a neural
language model (LM) (Mikolov et al., 2010). The model is trained to predict the next word in the
sequence, given the current sequence seen so far. At each timestep i for input sequence w0...n,
the input word wi, represented as a one-hot vector over the vocabulary, is embedded into a high-
dimensional continuous vector using the learned embedding matrixWeh (Eqn 1). A nonlinear func-
tion f is applied to the embedding combined with the previous hidden state to generate the hidden
state hi (Eqn 2). At the output layer, the next word oi is predicted via the softmax function over the

2

Feature 
Maps

Annotation 
Vectors

Source 
words

Target 
words

• CGRU decoder with additional separate attention over convolutional feature maps.

• The context vector ct now becomes the concatenation of textual and visual contexts.

MNMT with pool5 Features

The main idea is to inject a visual prior to encoder/decoder and/or to guide source/target
word representations using multiplicative interaction using pool5 feature vector V :

(Primary) Flickr Results

En!De # Params
Test2016 (Ensemble) Test2017 (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 4.6M 40.7 59.2 30.8 ± 1.0 / 33.2 51.6 ± 0.5 / 53.8
fusion-conv 6.0M 39.9 59.1 29.8 ± 0.9 / 32.7 51.2 ± 0.3 / 53.4
dec-init-ctx-trg-mul 6.3M 40.2 59.3 30.9 ± 1.0 / 33.2 51.4 ± 0.3 / 53.7
dec-init 5.0M 41.2 59.4 31.2 ± 0.7 / 33.4 51.3 ± 0.3 / 53.2
encdec-init 5.0M 40.6 59.5 31.4 ± 0.4 / 33.5 51.9 ± 0.4 / 53.7
ctx-mul 4.6M 40.4 59.6 31.1 ± 0.7 / 33.5 51.9 ± 0.2 / 53.8
trg-mul 4.7M 41.0 60.4 30.7 ± 1.0 / 33.4 52.2 ± 0.4 / 54.0

English!German

• pool5 architectures perform reasonably well.

• fusion-conv fails to improve over NMT.

• An improvement in BLEU does not necessarily yield an improvement in METEOR.

En!Fr
Test2016 (Ensemble) Test2017 (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 54.3 71.3 50.4 ± 0.9 / 53.0 67.5 ± 0.7 / 69.8
fusion-conv 56.5 72.8 51.6 ± 0.9 / 55.5 68.6 ± 0.7 / 71.7
dec-init 56.7 73.0 52.7 ± 0.9 / 55.5 69.4 ± 0.7 / 71.9
ctx-mul 56.7 73.0 52.6 ± 0.9 / 55.7 69.5 ± 0.7 / 71.9
trg-mul 56.7 73.0 52.7 ± 0.9 / 55.5 69.5 ± 0.7 / 71.7

ens-nmt-7 54.6 71.6 53.3 70.1
ens-mmt-6 57.4 73.6 55.9 72.2

English!French

• All multimodal systems perform significantly better than monomodal NMT.

• No clear di↵erence between fusion-conv and pool5 architectures.

(Auxiliary) MSCOCO Results

System
En!De (µ ± �/Ensemble) En!Fr (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 26.4 ± 0.2 / 28.7 46.8 ± 0.7 / 48.9 41.2 ± 1.2 / 43.3 61.3 ± 0.9 / 63.3
fusion-conv 25.1 ± 0.7 / 28.0 46.0 ± 0.6 / 48.0 43.2 ± 1.2 / 45.9 63.1 ± 0.9 / 65.6
dec-init-ctx-trg-mul 26.3 ± 0.9 / 28.8 46.5 ± 0.4 / 48.5 - -
dec-init 26.8 ± 0.5 / 28.8 46.5 ± 0.6 / 48.4 43.3 ± 1.2 / 46.2 63.4 ± 0.9 / 66.0
encdec-init 27.1 ± 0.9 / 29.4 47.2 ± 0.6 / 49.2 - -
ctx-mul 27.0 ± 0.7 / 29.3 47.1 ± 0.7 / 48.7 43.3 ± 1.2 / 45.6 63.4 ± 0.9 / 65.4
trg-mul 26.4 ± 0.9 / 28.5 47.4 ± 0.3 / 48.8 43.5 ± 1.2 / 45.5 63.2 ± 0.9 / 65.1

ens-nmt-7 - - 43.6 63.4
ens-mmt-6 - - 45.9 65.9

• trg-mul and ens-mmt-6 is submitted for En!De and En!Fr respectively.

• Model selection based on Flickr performance does not necessarily yield the best out-
of-domain performance.

Conclusion

• Reducing the number of parameters to around 5M obviously allowed the networks to
avoid overfitting which resulted in better baselines.

• Global pool5 features resulted in better performance compared to multimodal atten-
tion (fusion-conv) for both language pairs.

• Multimodal attention with spatial features is on par with pool5 architectures for
En!Fr but substantially worse for En!De.

–Multimodal attention needs further investigation.

–Textual pathway may still be too dominant over the visual one.
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Summary

• Monomodal and multimodal Neural Machine Translation (NMT) systems from LIUM
& CVC for En!De and En!Fr.

• Our pool5-enhanced Multimodal NMT systems ranked first for both language pairs
according to BLEU/METEOR.

• Significantly smaller models with ⇠5M parameters.

Dataset & Training

• Dataset: Multi30k with 29K training image-caption pairs + BPE-10K.

• Image Features from ResNet-50 trained on ImageNet:

– 2048-dimensional global features from the pool5 layer,

– 14x14x1024 spatial features from the res4f relu layer.

• Software: NMTPy - each model trained with 5 seeds.

• Early-stopping on METEOR, Xavier weight initialization, gradient clip @ 5, Adam
with learning rate 4e-4, L2 regularization, Dropout after source embeddings, source
annotations and pre-softmax activations.

Baseline NMT

• Bi-directional GRU encoder with layer normalization, Bahdanau-style attention and
Conditional GRU (CGRU) decoder initialized using average source annotation.

• Embeddings and GRU layers are of size 128 and 256 respectively.

• Target probability distribution is conditioned on the previous token embedding, the
hidden state of the CGRU and the context vector:

P (yt|yt�1,eht, ct) = softmax
⇣
Wo tanh

⇣
We yt�1 + Wd

eht + Wc ct

⌘⌘

MNMT with Spatial Features (fusion-conv)

Decoder with
Multimodal
Attention

Textual
Encoder

Image

Visual Encoder 
(CNN)

Under review as a conference paper at ICLR 2016

CNN RNN

children sitting
in a classroom

+ RNN

Schulkinder sitzen
in einem Klassenzimmer

Figure 1: An illustration of the multilingual multimodal language model. Descriptions are generated
by combining features from source- and target-language multimodal language models. The dashed
lines denote variants of the model: removing the CNN features from a source model would create
language-only conditioning vectors; whereas removing the CNN input in the decoder assumes the
source feature vectors know enough about the image to generate a good description.

picts the overall approach, illustrating the way we transfer feature representations between models.
Image description models generally use a fixed representation of the visual input taken from a object
detection model (e.g., a CNN). In this work we add fixed features extracted from a source language
model (which may itself be a multimodal image description model) to our image description model.
This is distinct from neural machine translation models which train source language feature repre-
sentations specifically for target decoding in a joint model (Cho et al., 2014; Sutskever et al., 2014).
Our composite model pipeline is more flexible than a joint model, allowing the reuse of models for
other tasks (e.g., monolingual image description, object recognition) and not requiring retraining
for each different language pair. We show that the representations extracted from source language
models, despite not being trained to translate between languages, are nevertheless highly successful
in transferring additional informative features to the target language image description model.

In a series of experiments on the IAPR-TC12 dataset of images described in English and German,
we find that models that incorporate source language features substantially outperform target mono-
lingual image description models. The best English-languagemodel improves upon the state-of-the-
art by 2.3 BLEU4 points for this dataset. In the first results reported on German image description,
our model achieves a 8.8 Meteor point improvement compared to a monolingual image description
baseline. The implication is that linguistic and visual features offer orthogonal improvements in
multimodal modelling (a point also made by Silberer & Lapata (2014) and Kiela & Bottou (2014)).
The models that include visual features also improve over our translation baselines, although to
a lesser extent; we attribute this to the dataset being exact translations rather than independently
elicited descriptions, leading to high performance for the translation baseline. Our analyses show
that the additional features improve mainly lower-quality sentences, indicating that our best models
successfully combine multiple noisy input modalities.

2 MODELS

Our multilingual image description models are neural sequence generation models, with additional
inputs from either visual or linguistic modalities, or both. We present a family of models in sequence
of increasing complexity to make their compositional character clear, beginning with a neural se-
quence model over words and concluding with the full model using both image and source features.
See Figure 2 for a depiction of the model architecture.

2.1 RECURRENT LANGUAGE MODEL (LM)

The core of our model is a Recurrent Neural Network model over word sequences, i.e., a neural
language model (LM) (Mikolov et al., 2010). The model is trained to predict the next word in the
sequence, given the current sequence seen so far. At each timestep i for input sequence w0...n,
the input word wi, represented as a one-hot vector over the vocabulary, is embedded into a high-
dimensional continuous vector using the learned embedding matrixWeh (Eqn 1). A nonlinear func-
tion f is applied to the embedding combined with the previous hidden state to generate the hidden
state hi (Eqn 2). At the output layer, the next word oi is predicted via the softmax function over the
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• The context vector ct now becomes the concatenation of textual and visual contexts.

MNMT with pool5 Features

The main idea is to inject a visual prior to encoder/decoder and/or to guide source/target
word representations using multiplicative interaction using pool5 feature vector V :

(Primary) Flickr Results

En!De # Params
Test2016 (Ensemble) Test2017 (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 4.6M 40.7 59.2 30.8 ± 1.0 / 33.2 51.6 ± 0.5 / 53.8
fusion-conv 6.0M 39.9 59.1 29.8 ± 0.9 / 32.7 51.2 ± 0.3 / 53.4
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encdec-init 5.0M 40.6 59.5 31.4 ± 0.4 / 33.5 51.9 ± 0.4 / 53.7
ctx-mul 4.6M 40.4 59.6 31.1 ± 0.7 / 33.5 51.9 ± 0.2 / 53.8
trg-mul 4.7M 41.0 60.4 30.7 ± 1.0 / 33.4 52.2 ± 0.4 / 54.0

English!German

• pool5 architectures perform reasonably well.

• fusion-conv fails to improve over NMT.

• An improvement in BLEU does not necessarily yield an improvement in METEOR.

En!Fr
Test2016 (Ensemble) Test2017 (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 54.3 71.3 50.4 ± 0.9 / 53.0 67.5 ± 0.7 / 69.8
fusion-conv 56.5 72.8 51.6 ± 0.9 / 55.5 68.6 ± 0.7 / 71.7
dec-init 56.7 73.0 52.7 ± 0.9 / 55.5 69.4 ± 0.7 / 71.9
ctx-mul 56.7 73.0 52.6 ± 0.9 / 55.7 69.5 ± 0.7 / 71.9
trg-mul 56.7 73.0 52.7 ± 0.9 / 55.5 69.5 ± 0.7 / 71.7

ens-nmt-7 54.6 71.6 53.3 70.1
ens-mmt-6 57.4 73.6 55.9 72.2

English!French

• All multimodal systems perform significantly better than monomodal NMT.

• No clear di↵erence between fusion-conv and pool5 architectures.

(Auxiliary) MSCOCO Results

System
En!De (µ ± �/Ensemble) En!Fr (µ ± �/Ensemble)
BLEU METEOR BLEU METEOR

Baseline NMT 26.4 ± 0.2 / 28.7 46.8 ± 0.7 / 48.9 41.2 ± 1.2 / 43.3 61.3 ± 0.9 / 63.3
fusion-conv 25.1 ± 0.7 / 28.0 46.0 ± 0.6 / 48.0 43.2 ± 1.2 / 45.9 63.1 ± 0.9 / 65.6
dec-init-ctx-trg-mul 26.3 ± 0.9 / 28.8 46.5 ± 0.4 / 48.5 - -
dec-init 26.8 ± 0.5 / 28.8 46.5 ± 0.6 / 48.4 43.3 ± 1.2 / 46.2 63.4 ± 0.9 / 66.0
encdec-init 27.1 ± 0.9 / 29.4 47.2 ± 0.6 / 49.2 - -
ctx-mul 27.0 ± 0.7 / 29.3 47.1 ± 0.7 / 48.7 43.3 ± 1.2 / 45.6 63.4 ± 0.9 / 65.4
trg-mul 26.4 ± 0.9 / 28.5 47.4 ± 0.3 / 48.8 43.5 ± 1.2 / 45.5 63.2 ± 0.9 / 65.1

ens-nmt-7 - - 43.6 63.4
ens-mmt-6 - - 45.9 65.9

• trg-mul and ens-mmt-6 is submitted for En!De and En!Fr respectively.

• Model selection based on Flickr performance does not necessarily yield the best out-
of-domain performance.

Conclusion

• Reducing the number of parameters to around 5M obviously allowed the networks to
avoid overfitting which resulted in better baselines.

• Global pool5 features resulted in better performance compared to multimodal atten-
tion (fusion-conv) for both language pairs.

• Multimodal attention with spatial features is on par with pool5 architectures for
En!Fr but substantially worse for En!De.

–Multimodal attention needs further investigation.

–Textual pathway may still be too dominant over the visual one.
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Conclusion: integrate a fixed-size image vector

For text: Prof Ray Mooney (U. Texas):
→ "You can’t cram the meaning of a whole *$#*! sentence into a single *$#*!

vector!"
went to matrix representation + attention

Can we summarise the whole content of an image into a single vector?
Probably not what we want
Parsimony: extract only relevant parts of the image
e.g. objects related to the input words
from coarse to fine visual information
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What’s next?

Jointly (re)-train the CNN for image encoding
→ learn better features suitable for a generation task

Multi-task learning
→ provide grounded word representations by introducing an auxiliary task involving

image and text.
Can be done on source or target words.

Various auxiliary tasks can be considered
Predicting the image vector from source sequences
Predicting bag-of-words (BOW) from image (∼ captioning) or from source sequence
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Multi-task learning

Auxiliary task: Image vector prediction
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Imagination: [Elliott and Kádár, 2017]
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Multi-task learning

Auxiliary task: Bag of word prediction (multi-labels classification)

Main task: Machine Translation (sequence prediction)
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Multi-task learning

Auxiliary task: Bag of word prediction (multi-labels classification)
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Under review as a conference paper at ICLR 2016

CNN RNN

children sitting
in a classroom

+ RNN

Schulkinder sitzen
in einem Klassenzimmer

Figure 1: An illustration of the multilingual multimodal language model. Descriptions are generated
by combining features from source- and target-language multimodal language models. The dashed
lines denote variants of the model: removing the CNN features from a source model would create
language-only conditioning vectors; whereas removing the CNN input in the decoder assumes the
source feature vectors know enough about the image to generate a good description.

picts the overall approach, illustrating the way we transfer feature representations between models.
Image description models generally use a fixed representation of the visual input taken from a object
detection model (e.g., a CNN). In this work we add fixed features extracted from a source language
model (which may itself be a multimodal image description model) to our image description model.
This is distinct from neural machine translation models which train source language feature repre-
sentations specifically for target decoding in a joint model (Cho et al., 2014; Sutskever et al., 2014).
Our composite model pipeline is more flexible than a joint model, allowing the reuse of models for
other tasks (e.g., monolingual image description, object recognition) and not requiring retraining
for each different language pair. We show that the representations extracted from source language
models, despite not being trained to translate between languages, are nevertheless highly successful
in transferring additional informative features to the target language image description model.

In a series of experiments on the IAPR-TC12 dataset of images described in English and German,
we find that models that incorporate source language features substantially outperform target mono-
lingual image description models. The best English-languagemodel improves upon the state-of-the-
art by 2.3 BLEU4 points for this dataset. In the first results reported on German image description,
our model achieves a 8.8 Meteor point improvement compared to a monolingual image description
baseline. The implication is that linguistic and visual features offer orthogonal improvements in
multimodal modelling (a point also made by Silberer & Lapata (2014) and Kiela & Bottou (2014)).
The models that include visual features also improve over our translation baselines, although to
a lesser extent; we attribute this to the dataset being exact translations rather than independently
elicited descriptions, leading to high performance for the translation baseline. Our analyses show
that the additional features improve mainly lower-quality sentences, indicating that our best models
successfully combine multiple noisy input modalities.

2 MODELS

Our multilingual image description models are neural sequence generation models, with additional
inputs from either visual or linguistic modalities, or both. We present a family of models in sequence
of increasing complexity to make their compositional character clear, beginning with a neural se-
quence model over words and concluding with the full model using both image and source features.
See Figure 2 for a depiction of the model architecture.

2.1 RECURRENT LANGUAGE MODEL (LM)

The core of our model is a Recurrent Neural Network model over word sequences, i.e., a neural
language model (LM) (Mikolov et al., 2010). The model is trained to predict the next word in the
sequence, given the current sequence seen so far. At each timestep i for input sequence w0...n,
the input word wi, represented as a one-hot vector over the vocabulary, is embedded into a high-
dimensional continuous vector using the learned embedding matrixWeh (Eqn 1). A nonlinear func-
tion f is applied to the embedding combined with the previous hidden state to generate the hidden
state hi (Eqn 2). At the output layer, the next word oi is predicted via the softmax function over the

2

Feature 
Maps

Shared Target 
Embeddings

Main task: Machine Translation (sequence prediction)
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Multi-label prediction: example

SRC a man wearing a black hat is shooting a rifle outside .
REF un homme portant un chapeau noir tire avec un fusil dehors .

Average
pooling

Text Encoder 
(biRNN)

un

homme
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noir

tire

avec

fusil
dehors

a man wearing a black hat is shooting a rifle outside .
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Multi-label prediction: example

SRC a man wearing a black hat is shooting a rifle outside .
REF un homme portant un chapeau noir tire avec un fusil dehors .
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Multi-task learning

Predict words in the description (multi-label classification task)

En→De Flickr # Params Test2017 (µ± σ)
BLEU METEOR TER R@100 LRAP

NMT17 4.6M 30.8 ± 1.0 51.6 ± 0.5 - - -
MMT17 (trgmul) 4.7M 30.7 ± 1.0 52.2 ± 0.4 - - -

Baseline NMT 4.6M 31.4 ± 0.4 52.1 ± 0.2 50.4 ± 1.1 - -
NMT WP-lastctx 5.6M 32.2 ± 0.2 52.7 ± 0.5 49.9 ± 0.4 0.52 0.31
NMT WP-lastctx-tied 4.6M 31.7 ± 0.8 52.3 ± 0.1 50.2 ± 0.8 0.51 0.30

Visual WP-Res152 31.2 ± 0.6 51.9 ± 0.3 50.7 ± 0.3 0.49 0.28
Visual WP-Res50 31.2 ± 0.6 52.6 ± 0.1 51.0 ± 1.6 0.48 0.28

+ftune-lastblock 31.4 ± 0.3 52.3 ± 0.2 51.0 ± 0.5 0.49 0.27

LRAP: Label Ranking Average Precision
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Multi-task learning: some conclusions / ongoing work and perspectives

Integrating multiple tasks
Adding an auxiliary task seems to provide better results

→ try with more tasks
Address specific "language games"

create a test suite dedicated to a language problem
e.g. gender agreement

→ Prof Moens relative location ⇒ relate to textual input
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Some advertisement

Multimodal Machine Translation framework
framework for mono- and multi-modal NMT systems
https://github.com/lium-lst/nmtpytorch
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Some advertisement

MMT’18 @ WMT
Organizing MMT18 evaluation campaign
http://www.statmt.org/wmt18/multimodal-task.html
Tasks:

1 MMT
2 Multi-source MMT En, De, Fr, Img → Cs

Data:
Multi30k: 31k image descriptions
quadri-lingual (En, De, Fr, Cs) bi-modal (image, text) corpus

Past events:
http://www.statmt.org/wmt17/multimodal-task.html
http://www.statmt.org/wmt16/multimodal-task.html

L. Barrault (LIUM, Le Mans Université) April 10, 2018 42 / 49

http://www.statmt.org/wmt18/multimodal-task.html
http://www.statmt.org/wmt17/multimodal-task.html
http://www.statmt.org/wmt16/multimodal-task.html


multimodal

Photo Credits: Cité Plantagenêt, Le Mans Tourisme

Come visit us in Le Mans!
Questions?
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