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Motivation

Pick the red apple 
next to the black mug 
and cut it into slices

Among other things, this requires 
1. Identifying which objects “apple” and “mug” refer to  
2. Understanding the relation “next to” 
3. Knowing that it is possible to cut an apple and how to cut 

it



ReGround Project’s Hypotheses 

Four tenets of ReGround 
1. Grounding requires integrating from multiple modalities 
2. Identifying symbols is only the first step of grounding 
3. Learning affordances is the second, underexplored step of 

grounding  
4. Exploiting relationships and affordances will improve grounding

1. Pick the red apple  

next to the black mug 

2. Cut it into slices

Language Vision
Spatial 
relation

Apple 
affords 
cutting



A key question in AI:
Dealing with uncertainty

Reasoning with 
relational data

Learning

Statistical relational learning, probabilistic logic 
learning, probabilistic programming, ...

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure
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is found in
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is found in
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Biomine 
database @ 

Helsinki

Networks of Uncertain     
Information
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Biomine 
network
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Biomine Network

presenilin 2
Gene

EntrezGene:81751

Notch receptor processing
BiologicalProcess
GO:GO:0007220

-participates_in
0.220

BiologicalProces

Gene

• different types of nodes & links
• automatically extracted from text, 
databases, ...
• probabilities quantifying source 
reliability, extractor confidence, ...
• similar in other contexts, e.g.,  
linked open data, NELL@CMU, ...
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Example:  
Information Extraction

8 NELL:  http://rtw.ml.cmu.edu/rtw/

instances for many 
different relations

degree of certainty



Dynamic networks
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[Thon et al, MLJ 11]

Travian:  A massively multiplayer 
real-time strategy game

Can we build a model
of this world ? 

Can we use it for playing
better ?
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Answering Probability 
Questions 

10
https://dtai.cs.kuleuven.be/problog/natural_language

Our goal

5

Mike has a bag of marbles with 4 white, 8 blue, and 
6 red marbles. He pulls out one marble from the 
bag and it is red. What is the probability that the 
second marble he pulls out of the bag is white? 

The answer is 0.235941.

[Dries et al., IJCAI 17]



Common theme
Dealing with 
uncertainty

Reasoning with 
relational data

Learning

Statistical relational learning, probabilistic logic 
learning, probabilistic programming, ...

11

• many different formalisms 
• our focus: probabilistic  
      (logic) programming



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

LPAD: Bruynooghe 
Vennekens,Verbaeten

Markov Logic: Domingos, 
Richardson

CLP(BN): Cussens,Page,  
Qazi,Santos Costa

The (Incomplete) SRL Alphabet Soup

2011

PRMs: Friedman,Getoor,Koller, 
Pfeffer,Segal,Taskar

´03´96

SLPs: Cussens,Muggleton 

´90 ´95

First KBMC approaches: 
Bresse,  
Bacchus, 
Charniak,  
Glesner, 
Goldman,  
Koller, 
Poole, Wellmann

´00

BLPs: Kersting, De Raedt

RMMs: Anderson,Domingos, 
Weld

LOHMMs: De Raedt, Kersting, 
Raiko

[names in alphabetical order]

Prob. CLP: Eisele, Riezler

´02

PRISM: Kameya, Sato

´94

PLP: Haddawy, Ngo

´97´93

Prob. Horn  
Abduction: Poole

´99

1BC(2): Flach, 
Lachiche

Logical Bayesian Networks: 
 Blockeel,Bruynooghe, 

Fierens,Ramon, 

´07 RDNs: Jensen, Neville
´10 PSL: Broecheler, Getoor, Mihalkova

BUGS/Plates

Relational Markov Networks

Multi-Entity Bayes Nets

Object-Oriented Bayes Nets

IBAL

SPOOK

Relational Gaussian Processes Infinite Hidden Relational Models

Figaro

Church

Probabilistic Entity-Relationship Models

DAPER



Many different angles

• Probabilistic programming

• Logic programming and probabilistic databases  

• (ProbLog and DS as representatives)

• Functional and imperative  (Church as representatives)

• Statistical relational AI and learning 

• Markov Logic 

• Relational Bayesian Networks (and variants)
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Probabilistic Logic Programs

• devised by Poole and Sato in the 90s.

• built on top of the programming language Prolog

• upgrade directed graphical models

• combines the advantages / expressive power of 
programming languages (Turing equivalent) and graphical 
models 

• Generalises probabilistic databases (Suciu et al.)

• Implementations include:  PRISM, ICL, ProbLog, LPADs, CP-
logic,  Dyna, Pita, DC, … 
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Roadmap

• Modeling 

• Reasoning

• Learning

• Dynamics 

• Decisions

15



Part I : Modeling

16



parameter learning, 
adapted relational 

learning techniques

Prolog / logic 
programming

atoms as random 
variables

ProbLog 
probabilistic Prolog

Dealing with 
uncertainty

Reasoning with 
relational data

Learningstress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X).  
smokes(X) :-  
     influences(Y,X), smokes(Y).

0.8::stress(ann). 
0.6::influences(ann,bob). 
0.2::influences(bob,carl).

one world 

several possible worlds 

Distribution Semantics [Sato, ICLP 95]:
probabilistic choices + logic program
→ distribution over possible worlds

17 http://dtai.cs.kuleuven.be/problog/



0.4 :: heads.  

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green);  
                   0.5 :: col(2,blue).  

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

annotated disjunction: second ball is red with 
probability 0.2, green with 0.3,  and blue with 0.5logical rule encoding 

background knowledge

ProbLog by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

probabilistic fact: heads is true with 
probability 0.4 (and false with 0.6)annotated disjunction: first ball is red 

with probability 0.3 and blue with 0.7
probabilistic choices

consequences
18



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Questions

• Probability of win?  
 

• Probability of win given col(2,green)?  
 

• Most probable world where win is true?

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

marginal probability

conditional probability

MPE inference

query

evidence

19



Possible Worlds

H
W

R

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue). 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue). 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4
G

20



Possible Worlds

W
R RH

W
R R G

×0.3

0.4 :: heads. 

0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true. 

win :- heads, col(_,red). 
win :- col(1,C), col(2,C).

×0.30.4 ×0.2×0.3(1−0.4) ×0.3×0.3(1−0.4)

G

21



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

All Possible Worlds
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De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Most likely world 
where win is true?

W
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MPE Inference

23



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

P(win)=

W
R R

H
W

R B

H
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H
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H
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∑? =0.562 Marginal 
Probability
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De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

=P(win∧col(2,green))/P(col(2,green))
P(win|col(2,green))=

=0.036/0.3=0.12

W
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∑/∑? Conditional 
Probability
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De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI Distribution Semantics 
(with probabilistic facts)

26

[Sato, ICLP 95]

P (Q) =
X

F[R|=Q

Y

f2F

p(f)
Y

f 62F

1� p(f)

query

subset of 
probabilistic 

facts

Prolog 
rules

sum over possible worlds 
where Q is true

probability of 
possible world



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

“Program” Abstraction: 
▪ S, C logical variable representing students, courses 
▪ the set of individuals of a type is called a population 
▪ Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding: 
• for every student s, there is a random variable Int(s) 
• for every course c, there is a random variable Di(c) 
• for every s, c pair there is a random variable Grade(s,c) 
• all instances share the same structure and parameters



G

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C). 

ProbLog by example: 

Grading



0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C). 

   ProbLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f). 

excellent(S) :- student(S), not grade(S,C,G), below(G,a).  
excellent(S) :- student(S), grade(S,C,a).



0.5::weather(sun,0) ; 0.5::weather(rain,0) <- true. 

0.6::weather(sun,T) ; 0.4::weather(rain,T)  
               <- T>0, Tprev is T-1, weather(sun,Tprev). 
0.2::weather(sun,T) ; 0.8::weather(rain,T)  
               <- T>0, Tprev is T-1, weather(rain,Tprev).

ProbLog by example: 

Rain or sun?

day 0

0.5

0.5

day 1

0.6

0.4

day 2

0.6

0.4

day 3

0.6

0.4

day 4

0.6

0.4

day 5

0.6

0.4

day 6

0.6

0.4

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

infinite possible worlds! BUT: finitely many partial 
worlds suffice to answer any given ground query
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0.3::stress(X):- person(X).  
0.2::influences(X,Y):-  
             person(X), person(Y). 

smokes(X) :- stress(X).  
smokes(X) :-  
     friend(X,Y), influences(Y,X), smokes(Y). 

0.4::asthma(X) <- smokes(X).

ProbLog by example: 

Friends & smokers
1

2
3

4

person(1). 
person(2). 
person(3). 
person(4). 

friend(1,2). 
friend(2,1). 
friend(2,4). 
friend(3,4). 
friend(4,2).

typed probabilistic facts  
= a probabilistic fact for each grounding

0.3::stress(1). 
0.3::stress(2). 
0.3::stress(3). 
0.3::stress(4).

0.2::influences(1,1). 
0.2::influences(1,2). 
0.2::influences(1,3). 
0.2::influences(1,4). 
0.2::influences(2,1). 
... 
0.2::influences(4,2). 
0.2::influences(4,3). 
0.2::influences(4,4).

annotated disjunction with implicit head atom: 
with probability 0.6, nothing happens
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ProbLog by example: 

Limited Luggage
weight(skis,6).  
weight(boots,4).  
weight(helmet,3).  
weight(gloves,2). 
P::pack(Item) :- weight(Item,Weight),  P is 1.0/Weight. 
excess(Limit) :- excess([skis,boots,helmet,gloves],Limit). 

excess([],Limit) :- Limit<0.  
excess([I|R],Limit) :-  
   pack(I), weight(I,W), L is Limit-W, excess(R,L). 
excess([I|R],Limit) :-  
   \+pack(I), excess(R,Limit).

flexible probability:  
computed from the weight of the item

1/6::pack(skis). 
1/4::pack(boots). 
1/3::pack(helmet). 
1/2::pack(gloves).

list of all items

pack first item, decrease 
limit by its weight, and 

continue with rest of items
do not pack first item, 

continue with rest of itemsno items left: did we add too much?
32

Concept: flexible 
probability



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Dealing with 
uncertainty

Reasoning with 
relational data

relational 
database

tuples as random 
variables

Probabilistic Databases 

Learning

one world 

several possible worlds 

33

person city

ann london

bob york

eve new york

tom paris

bornIn
city country

london uk

york uk

paris usa

cityIn

person city P

ann london 0,87

bob york 0,95

eve new york 0,9

tom paris 0,56

bornIn

city country P

london uk 0,99

york uk 0,75

paris usa 0,4

cityIn

select x.person, y.country 
from bornIn x, cityIn y 
where x.city=y.city 

probabilistic tables + database queries
→ distribution over possible worlds

[Suciu et al 2011]



Example:  
Information Extraction

34 NELL:  http://rtw.ml.cmu.edu/rtw/

instances for many 
different relations

degree of certainty



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

• probabilistic choices + their consequences

• probability distribution over possible worlds

• how to efficiently answer questions?

• most probable world (MPE inference)

• probability of query (computing marginals)

• probability of query given evidence 

Distribution Semantics

35



http://dtai.cs.kuleuven.be/problog



functional 
programming

random 
primitives

Church 
probabilistic functional 

programming

Dealing with 
uncertainty

Reasoning with 
relational data

Learning

(define plus5 (lambda (x) (+ x 5))) 

(map plus5 '(1 2 3))

(define randplus5 
 (lambda (x) (if (flip 0.6)  
                 (+ x 5)  
                 x))) 

(map randplus5 '(1 2 3))

one execution 

several 
possible 

executions 

probabilistic primitives + functional program
→ distribution over possible executions

37

[Goodman et al, UAI 08]

http://probmods.org



(define win (or win1 win2))

(define heads (mem (lambda () (flip 0.4))))

Church by example: 

A bit of gambling h

• toss (biased) coin & draw ball from each urn

• win if (heads and a red ball) or (two balls of same color)

38

(define color1 (mem (lambda () (if (flip 0.3) 'red 'blue))))

(define color2 (mem (lambda ()  
                 (multinomial '(red green blue) '(0.2 0.3 0.5)))))

(define redball (or (equal? (color1) 'red) (equal? (color2) 'red)))

(define win1 (and (heads) redball))

(define win2 (equal? (color1) (color2)))



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Probabilistic Programming Ingredients 
inject random variables in programming language

• random var = simplest boolean concept in language

• extensions for continuous variables exist

define semantics :

• possible worlds for probabilistic logics / databases / StarAI

• trace-based semantics for functional / imperative languages

• define probability of execution, whenever random variable 
encountered -> multiply by probabilty 

inference to answer (conditional) queries

learning 

• Bayesian inference : conditioning on observations and querying for 
distributions (typical for functional and imperative languages)

• Expected Maximisation (typical for Probabilistic Logics & StarAI)

39
see also [Russell, CACM 15]



parameter learning, 
adapted relational 

learning techniques

First order logic

Markov Logic 

Dealing with 
uncertainty

Reasoning with 
relational data

Learning

for all X: stress(X) -> smokes(X). 
for all X,Y: smokes(X), influences(X,Y) -> 
      smokes(Y).

12: for all X: stress(X) -> smokes(X). 
3: for all X,Y: smokes(X), influences(X,Y) -> 
      smokes(Y).

Constrains possible worlds

soft constraints

40 https://alchemy.cs.washington.edu/

{stress(ann), smokes(ann)} 
{smokes(ann)} 



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic: Intuition

▪ Undirected graphical model 
▪ A logical KB is a set of hard constraints  

on the set of possible worlds 
▪ Let’s make them soft constraints:  

When a world violates a formula, 
it becomes less probable, not impossible 

▪ Give each formula a weight 
(Higher weight  ⇒  Stronger constraint)

( )∑∝ satisfiesit  formulas of weightsexpP(world)



Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic



Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Markov Logic



Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic

▪ A Markov Logic Network (MLN) is a set of pairs (F, w) where 
▪ F is a formula in first-order logic 
▪ w is a real number 

▪ An MLN defines a Markov network with 
▪ One node for each grounding of each predicate 

in the MLN 
▪ One feature for each grounding of each formula F in the MLN, 

with the corresponding weight w 
▪ Probability of a world 

Weight of formula i No. of true groundings of formula i in x

!
"

#
$
%

&
= ∑

i
ii xnw

Z
xP )(exp

1
)(



Applications

▪ Natural language processing, Collective 
Classification, Social Networks, Activity 
Recognition, …

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI



Part II : Inference

48



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Inference
The challenge : disjoint sum problem

P(win) = P(h(1) ⋁ (h(2) ⋀ h(3))

           =/= P(h(1)) +  P(h(2) ⋀ h(3))

should be

= P(h(1)) +  P(h(2) ⋀ h(3)) - P(h(1) ⋀h(2) ⋀ h(3))
49

0.4::heads(1). 
0.7::heads(2). 
0.5::heads(3). 
win :- heads(1). 
win :- heads(2), heads(3).

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Inference
Map to Weighted Model Counting Problem and Solver

Ground out

+ Put formula in  CNF format

+ weights

+ call WMC

50

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 

h(1) → 0.4
¬h(1) → 0.6

h(2) → 0.7
¬h(2) → 0.3

h(3) → 0.5
¬h(3) → 0.5

(¬win ⋁ h(1) ⋁ h(2))
⋀ (¬win ⋁ h(1) ⋁ h(3))

⋀ (win ⋁ ¬h(1))
⋀ (win ⋁ ¬h(2) ⋁ ¬h(3))

0.4::heads(1). 
0.7::heads(2). 
0.5::heads(3). 
win :- heads(1). 
win :- heads(2), heads(3).



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Weighted Model Counting
propositional formula in conjunctive normal form (CNF)

interpretations (truth 
value assignments) of 
propositional variables

weight 
of literal

given by SRL model & query 

possible worlds

for p::f,
w(f) = p
w(not f) = 1−p

51

P (Q) =
X

F[R|=Q

Y

f2F

p(f)
Y

f 62F

1� p(f)

WMC(�) =
X

IV |=�

Y

l2IV

w(l)



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Weighted Model Counting 
• Simple WMC solvers based on a generalisation of DPLL 

algorithm for SAT (Davis Putnam Logeman Loveland algorithm)

• Current solvers often use knowledge compilation (is also state 
of the art for inference in graphical models)  — here an OBDD, 
many variations s-dDNNF, SDDs, … 

truefalse

win?

0.4
h(1)

h(2)

h(3)

0 1

0.6

0.70.3

0.50.5

P(win) = 
probability of 
reaching 1-leaf

win ↔ h(1) ⋁ (h(2) ⋀ h(3)) 



More inference

• Many variations / extensions  

• Approximate inference  

• Lifted inference  

• infected(X) :- contact(X,Y), sick(Y).



Part III : Learning
a. Parameters

54



Parameter Learning

class(Page,C) :- has_word(Page,W), word_class(W,C).

class(Page,C) :- links_to(OtherPage,Page), 
class(OtherPage,OtherClass),

link_class(OtherPage,Page,OtherClass,C).

for each CLASS1, CLASS2 and each WORD

?? :: link_class(Source,Target,CLASS1,CLASS2).
?? :: word_class(WORD,CLASS).

55

e.g., webpage classification model



Sampling 
Interpretations

56



Parameter Estimation

57

p(fact) =    count(fact is true) 
Number of interpretations



Learning from partial 
interpretations

• Not all facts observed

• Soft-EM

• use expected count instead of count 

• P(Q |E) -- conditional queries !

58 [Gutmann et al, ECML 11; Fierens et al, TPLP 14]



Part III : Learning
b. Rules / Structure

59



Information Extraction in NELL

NELL:  http://rtw.ml.cmu.edu/rtw/

instances for many 
different relations

degree of certainty



ProbFOIL 
• Upgrade rule-learning to a probabilistic setting 

within a relational learning / inductive logic 
programming setting 

• Works with a probabilistic logic program instead 
of a deterministic one.  

• Introduce ProbFOIL, an adaption of Quinlan’s FOIL 
to this setting. 

• Apply to probabilistic databases like NELL



Pro Log
       surfing(X) :- not pop(X) and windok(X). 

       surfing(X) :-  not pop(X) and sunshine(X). 

       pop(e1).          windok(e1).        sunshine(e1).          B 

?-surfing(e1). 

  B U H |=\= e      (H does not cover e) 

H

e

An ILP example

no



ProbLog
p1:: surfing(X) :- not pop(X) and windok(X). 

p2:: surfing(X) :-  not pop(X) and sunshine(X). 

0.2::pop(e1).     0.7::windok(e1).    0.6::sunshine(e1).          B 

?-P(surfing(e1)). 

gives  (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x (1-0.7) x p2 = P(B U H |= e) 
           not pop   x windok x p1  + not pop x sunshine x (not windok) x p1 

H

e

probability that the example is covered 

a probabilistic Prolog



Inductive Probabilistic Logic 
Programming

Given

a set of example facts e ∈ E together with the 
probability p that they hold   

a background theory B in ProbLog  

a hypothesis space L (a set of clauses) 

Find  
arg min

H
loss(H,B, E) = arg min

H

�

ei�E

|Ps(B �H |= e)� pi|
argmin

H
loss(H,B,E) = argmin

H

X

ei2E

|Ps(B [H |= e)� pi|



Adapt Rule-learner

Contingency table: 
not only 1 / 0 values 

Covering:  
use multiple rules  

to cover an example



Technical Novelty
p:: surfing(X) :- not pop(X) and windok(X). 

ui = (p=1) 

li = (p=0) 

ProbFOIL includes  

a method to determine “optimal” p for a given rule



Experiments



ProbFOIL
• Upgrade rule-learning to a probabilistic setting 

within a relational learning / inductive logic 
programming setting 

• Works with a probabilistic logic program instead 
of a deterministic one.  

• Introduce ProbFOIL, an adaption of Quinlan’s FOIL 
to this setting. 

• Apply to probabilistic databases like NELL



Part IV : Dynamics
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Dynamics: Evolving Networks

• Travian:  A massively multiplayer real-time strategy game

• Commercial game run by TravianGames GmbH

• ~3.000.000 players spread over different “worlds”

• ~25.000 players in one world
[Thon et al. ECML 08]
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World Dynamics
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864 913

P 9

Fragment of world with

~10 alliances
~200 players
~600 cities

alliances color-coded

Can we build a model
of this world ? 

Can we use it for playing
better ?

[Thon, Landwehr, De Raedt, ECML08]
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World Dynamics
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World Dynamics
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World Dynamics
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World Dynamics
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World Dynamics
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city(C, Owner), city(C2, Attacker), close(C, C2)⇥
conquest(Attacker, C2) : p ⇤ nil : (1� p)

CPT-Rules

conquer a city which is close
P(conquest(), Time+5) ? 

learn parameters

Thon et al. MLJ 11

border

border

border

border

Alliance 2
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Alliance 6
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cause effect
b1, . . . bn � h1 : p1 ⇥ . . . ⇥ hm : pm
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Causal Probabilistic Time-
Logic (CPT-L)

[Thon et al, MLJ 11]

how does the 
world change 

over time?

0.4::conquest(Attacker,C); 0.6::nil :-  
 
             city(C,Owner),city(C2,Attacker),close(C,C2). 

if cause holds at time T

one of the effects holds at time T+1
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• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass). 
stackable(OBot,OTop) :-  
      ≃length(OBot) ≥ ≃length(OTop),  
      ≃width(OBot) ≥ ≃width(OTop). 
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,  
                            0 : pitcher, 0.8676 : plate, 
                            0.0284 : bowl, 0 : serving,  
                            0.1016 : none])  
                        :- obj(Obj), on(Obj,O2), type(O2,plate). 

[Gutmann et al, TPLP 11; Nitti et al, IROS 13]

random variable with Gaussian distribution

comparing values of 
random variables

random variable with 
discrete distribution
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Box scenario

• object tracking even 
when invisible

• estimate spatial relations

Relational State Estimation 
over Time

80 [Nitti et al, IROS 13]

Magnetism scenario

• object tracking

• category estimation 
from interactions
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Magnetic scenario
● 3 object types: magnetic, ferromagnetic, nonmagnetic

● Nonmagnetic objects do not interact

● A magnet and a ferromagnetic object attract each other

● Magnetic force that depends on the distance

● If an object is held magnetic force is compensated.
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Magnetic scenario
● 3 object types: magnetic, ferromagnetic, nonmagnetic

● 2 magnets attract or repulse

 
 

● Next position after attraction

type(X)t ~ finite([1/3:magnet,1/3:ferromagnetic,1/3:nonmagnetic]) ← 
object(X).

interaction(A,B)t ~ finite([0.5:attraction,0.5:repulsion]) ←  
object(A), object(B), A<B,type(A)t = magnet,type(B)t = magnet.

pos(A)t+1 ~ gaussian(middlepoint(A,B)t,Cov) ← 
near(A,B)t, not(held(A)), not(held(B)), 

interaction(A,B)t = attr,
c/dist(A,B)t

2 > friction(A)t.

pos(A)t+1 ~ gaussian(pos(A)t,Cov) ← not( attraction(A,B) ).



Learning relational affordances

Learn probabilistic model 

From two object interactions 
Generalize to N  

  

Shelf

   
 

  
push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14
Nitti et al, MLJ 16, 17; ECAI 16



What is an affordance ?

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map
of the example shown in Figure 5. The orange points in the right-hand image show the points
that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their
associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling
phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by
the sum of the individual single-arm actions.

15

• Formalism — related to STRIPS but models delta

• but also joint probability model over A, E, O

During this behavioural babbling stage, data for O, A and E are collected for
each of the robot’s exploratory actions. The robot executed 150 such exploratory
actions. One example of collected data during such an action is shown in Table 1.
Note that these values are obtained by the robot from its perception, which
naturally introduces uncertainty, which the relational a↵ordance model takes
into account (e.g., the displacement of OMain is observed to be a bit more than
10cm).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action E↵ects
shapeOMain : sprism
shapeOSec : sprism

distXOMain,OSec : 6.94cm
distYOMain,OSec : 1.90cm

tap(10)

displXOMain : 10.33cm
displYOMain : �0.68cm
displXOSec : 7.43cm
displYOSec : �1.31cm

During the babbling phase, we also learn the action space of each action. As
the iCub is not mobile, and each arm has a specific action range, each ai 2 A
can be performed when an object is located in a specific action space. An object
can be acted upon by both arms, by one arm but not the other, or it can be
completely out of the reach of the robot. If the exploratory arm action on an
object fails because no inverse kinematics solution was found, then that object is
not in that arm’s action space. We will show later how any spatial constraints,
such as action space, can be modelled with logical rules.

5.2. Learning the Model

The model will be learnt from the data collected during the robot’s 150
exploratory actions, one instance of such data as illustrated in Table 1. We
will model the (relational) object properties: distX, distY (the x and y-axis
distance between the centroids of the two objects), and the e↵ects: displX and
displY (the x and y-axis displacement of an object) with continuous distribution
random variables. We will start by learning a Linear Conditional Gaussian
(LCG) Bayesian Network [26]. An LCG BN specifies a distribution over a
mixture of discrete and continuous variables. In an LCG, a discrete random
variable may have only discrete parents, while a continuous random variable may
have both discrete and continuous parents. A continuous random variable (X)
will have a single Gaussian distribution function whose mean depends linearly
on the state of its continuous parent variables (Y ) for each configuration of its
discrete parent variables (U) [26]. This LCG distribution can be represented
as: P (X = x|Y = y, U = u) = N (x|M(u) +W (u)T y,�2(u)), with M a table of
mean values, W a table of regression (weight) coe�cient vectors, and � a table
of variances (independent of Y ). [26]

To learn an LCG BN for our setting, we will approximate displX, displY ,
and distX and distY by conditional Gaussian distributions over the short dis-
tances over which objects interact. These distances will be enforced by adding
logical rules.

16



Relational Affordance Learning
● Learning the Structure of Dynamic Hybrid Relational Models  

Nitti, Ravkic, et al. ECAI 2016 
− Captures relations/affordances 
− Suited to learn affordances in 

robotics set-up, continuous and discrete variables 
− Planning in hybrid robotics domain

  4

Learning and planning

● Goals:

– learn actions effects

– plan with the learned model

  14

DDC-TL

● DDC Tree learner

action(X)



Planning

[Nitti et al ECML 15, MLJ 17]



Part V : Decisions
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07/14/10 DTProbLog 17

Homer
Marge

Bart Lisa

Lenny

Apu

Moe

Seymour
Ralph

Maggie

??
??

??

?? ??

??

??

??

??

??

+$5

-$3

Which strategy 
gives the 
maximum 
expected utility?

Viral Marketing
Which advertising 
strategy maximizes 

expected profit?

[Van den Broeck et al, 
AAAI 10]

decide truth values of 
some atoms
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DTProbLog
? :: marketed(P) :- person(P).  

0.3 :: buy_trust(X,Y) :- friend(X,Y).  
0.2 :: buy_marketing(P) :- person(P).  
 
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). 
buys(X) :- marketed(X), buy_marketing(X). 

buys(P) => 5 :- person(P).  
marketed(P) => -3 :- person(P).

decision fact: true or false?

probabilistic facts 
+ logical rulesutility facts: cost/reward if true

1

2
3

4

person(1). 
person(2). 
person(3). 
person(4). 

friend(1,2). 
friend(2,1). 
friend(2,4). 
friend(3,4). 
friend(4,2).

marketed(1)       marketed(3) 

  bt(2,1)   bt(2,4)        bm(1) 

  buys(1)    buys(2)

utility = −3 + −3 + 5 + 5 = 4  
probability = 0.0032

world contributes 
0.0032×4 to 

expected utility of 
strategy

task: find strategy that maximizes expected utility
solution: using ProbLog technology
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l Causes: Mutations 
l All related to similar 

phenotype 
l Effects: Differentially expressed 
genes 
l 27 000 cause effect pairs

l Interaction network: 
l 3063 nodes 

l Genes 
l Proteins 

l 16794 edges 
l Molecular interactions 
l Uncertain

l Goal: connect causes to effects 
through common subnetwork 

l = Find mechanism 
l Techniques: 

l DTProbLog 
l Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15]
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Phenetic



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Applications

• Medical reasoning (Peter Lucas et al)

• Knowledge base construction and Nell (De Raedt et al)

• Biology/Phenetic (De Maeyer et al, NAR 15)

• Robotics (Nitti et al., MLJ 16, MLJ 17, Moldovan et al. RA 17)

• Activity Recognition (Skarlatidis et al, TPLP 14)

• …



A key question in AI:
Dealing with uncertainty

Reasoning with 
relational data

Learning

Statistical relational learning, probabilistic logic 
learning, probabilistic programming, ...

?• logic
• databases
• programming
• ...

• probability theory
• graphical models
• ...

• parameters
• structure

93

• Our answer: probabilistic (logic) programming     
      = probabilistic choices + (logic) program
• Many languages, systems, applications, ...
• ... and much more to do!



• Logic and Learning

• Probabilistic programming

• Logic programming and probabilistic databases  

• (ProbLog and DS as representatives)

• http://dtai.cs.kuleuven.be/problog/  — 

• check also [DR & Kimmig, MLJ 15]

• Statistical relational AI and learning 

• Markov Logic 

94

Further Reading

http://dtai.cs.kuleuven.be/problog/
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http://dtai.cs.kuleuven.be/problog
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• PRISM http://sato-www.cs.titech.ac.jp/prism/

• ProbLog2 http://dtai.cs.kuleuven.be/problog/

• Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes

• ProbLog1

• cplint https://sites.google.com/a/unife.it/ml/cplint

• CLP(BN)

• LP2

• PITA in XSB Prolog http://xsb.sourceforge.net/

• AILog2 http://artint.info/code/ailog/ailog2.html 

• SLPs http://stoics.org.uk/~nicos/sware/pepl

• contdist http://www.cs.sunysb.edu/~cram/contdist/

• DC https://code.google.com/p/distributional-clauses

• WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc

PLP 
Systems
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