Image-to-image translation

Luis Herranz, Joost van de Weijer Learning and machine perception (LAMP) group Computer Vision Center (Barcelona)

Outline

- M2CR project framework
- Paired image-to-image translation (pix2pix)
- Unpaired image-to-image translation (cycleGAN)
- Unseen translations (mix&match networks)

Outline

- M2CR project framework
- Paired image-to-image translation (pix2pix)
- Unpaired image-to-image translation (cycleGAN)
- Unseen translations (mix&match networks)

Encoder-decoder framework

M2CR partners

Natural language processing (LIUM - University of Maine)

Speech processing (MILA - University of Montreal)

Computer vision (CVC - Autonomous University of Barcelona)

M2CR: multilingual multimodal continuous representations

Humans perceive, understand and communicate through multiple modalities

Cross-modal translation Example: image captioning

M2CR: multilingual multimodal continuous representations

Multimodal translation Example: text+image to text

Challenges

- Heterogeneous modalities
 - Images: fixed-size 2D data in a continuous space
 - Speech: variable-length 1D in a continuous space
 - Language: variable-length discrete (one-hot) data
- Heterogeneous encoders-decoders
 - Text, speech: recurrent neural networks (RNNs)
 - Images: convolutional neural networks (CNNs)
- How to combine modalities properly
 - Usually depends on the particular task

This talk: image-to-image translation

Outline

- M2CR project framework
- Paired image-to-image translation (pix2pix)
- Unpaired image-to-image translation (cycleGAN)
- Unseen translations (mix&match networks)

How to solve the inverse problem?

Just signal processing: not possible

- Machine learning: do you have enough data?
 - Learn priors (e.g. faces)
 - Discover the data manifold

More realistic approximation

Image-to-image translation

- General purpose
- Learns from image pairs (input, output)

• • •

Image encoder-decoder

convolution + pooling layers

Paired image-to-image translation

Generative Adversarial Networks

Generative Adversarial Networks

Wasserstein GAN (WGAN-GP)

$\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(G(x)) + \log(1 - D(y))]$

Slide adapted from Zhu and Isola

$$\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(x, G(x)) + \log(1 - D(x, y))]$$

 $\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(x, G(x)) + \log(1 - D(x, y))]$

- Training details
 - Conditional GAN + L1

 $G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$

Stable training + fast convergence.

Slide adapted from Zhu and Isola

Examples

Isolation with Conditional Adversarial Networks", CVPR 2017 Figures from https://affinelayer.com/pix2pix/

• Examples

- Encoder-decoder (w/o skip) vs UNet (w/ skip)
- Loss: L1 vs L1+cGAN

Diversity in image-to-image translation

Zhu et al. "Toward Multimodal Image-to-Image Translation", NIPS 2017

Diversity in image-to-image translation

• More results. Bicycle GAN

Zhu et al. "Toward Multimodal Image-to-Image Translation", NIPS 2017

Cascade refinement networks

Chen and Koltun, "Photographic Image Synthesis with Cascaded Refinement Networks", ICCV 2017

pix2pixHD

Wang et al, "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs", arxiv 2017

Comparison image-to-image translation

(a) pix2pix

(c) Ours (w/o VGG loss)

(d) Ours (w/ VGG loss)

Wang et al, "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs", arxiv 2017

pix2pixHD:

interactive image-to-image translation

Semantic labels \rightarrow Cityscapes street views

Input labels

Synthesized image

Interactive editing results

Wang et al, "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs", arxiv 2017

Outline

- M2CR project framework
- Paired image-to-image translation (pix2pix)
- Unpaired image-to-image translation (cycleGAN)
- Unseen translations (mix&match networks)

Unpaired image-to-image translation

Unpaired image-to-image translation

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

Zhu et al, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017

• Results

Monet Paintings to Photos

apple \rightarrow orange

orange \rightarrow apple

More unpaired image translation

 \mathcal{X}_1

and many more ...

 χ_2

Outline

- M2CR project framework
- Paired image-to-image translation (pix2pix)
- Unpaired image-to-image translation (cycleGAN)
- Unseen translations (mix&match networks)

Unseen translations

Cascading image-to-image translators

Image-to-image (e.g. CycleGAN)

Mix and match networks

Image-to-image (e.g. CycleGAN)

Mix&match encoder-decoders (they haven't seen each other during training)

Mix and match networks

Unseen encoder-decoder alignment

- Scalable: number of networks O(N)
- Latent representation should be domain-independent
- Achieved using shared encoder/decoders and autoencoders

5 encoders, 5 decoders

Training all possible translators

Since it is unpaired, we could train all possible translators. Problems:

- No sharing
- Poor scalability: number of networks O(N²)

Example: scalable recolorization

Unpaired translation Eleven colors (i.e. domains)

Example: scalable recolorization

Unpaired translation Eleven colors (i.e. domains)

Requires training 10 encoders and 10 decoders

Example: scalable recolorization

Unpaired translation Eleven colors (i.e. domains)

Requires training 10 encoders and 10 decoders

CycleGANs for all combinations would require 55 encoders and 55 decoders

Example: scalable style transfer

Unpaired translation Five domains (photo, Monet, van Gogh, Ukiyo-e, Cezanne)

(4 encoders and 4 decoders)

Zero-pair translation

Cross-modal translation setting Paired data available for (RGB, depth) and (RGB, segm.)

Evaluate on the **unseen zeropair translations** (depth, segm.)

Zero-pair translation with two cascaded pix2pix (paired translations)

In practice

Zero-pair translation with CycleGAN (unpaired translation)

In theory

In practice

Depth-to-segmentation is too complex for CycleGAN

Shared encoder/decoders

Training for encoder-

decoder alignment:

Training for encoderdecoder alignment: Shared encoder/decoders Autoencoders

Training for encoderdecoder alignment: Shared encoder/decoders Latent losses Autoencoders

translation". CVPR 2018

Training for encoder-decoder alignment: shared encoder/decoders, autoencoders, latent losses and robust side information (pooling indices)

Test on zero-pair translation depth-to-segmentation

Side information in mix and match networks

No side information	Skip connections	indices	
Side information	Pretrained	mIoU	Global
-	N	32.2%	63.5%
Skip connections	N	14.1%	52.6%
Pooling indices	N	45.6%	73.4%
Pooling indices	Y	49.5%	80.0%

No side information

Comparison: depth-to-segmentation

(d) $D \rightarrow R \rightarrow S$ (e) Proposed (f) Ground truth

Figure 1: Zero-pair depth \rightarrow segmentation, trained on (depth,RGB) and (RGB,segmentation).

Thanks!

Computer Vision Center Edifici O, Campus UAB, Barcelona <u>http://www.cvc.uab.es</u>

Learning and Machine Perception (LAMP) team <u>http://www.cvc.uab.es/lamp</u>

