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What is human language understanding?

What is understanding?

Course on Natural Language

Understanding, Stanford University, 2016 * determine its truth (with justification)

calculate its entailments

take appropriate action in light of it

translate it into another language
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Imagery to empower automated language understanding
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1. When and how did it all starte
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ELIZA

* 1964-1966: Joseph Weizenbaum (MIT)
* Limited interpretation of a dialogue (with a psycho-analyst)

* Use of pre-coded patterns of language

* http://jerz.setonhill.edu/if /canon/eliza.htm

* http://www.inspiratron.org /Eliza/
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Conceptual dependency theory

* Late 1960-1977: Roger Schank (Yale University):
* Models that:

* Use pre-coded patterns of language
* Recognize a number of primitives and predicates in language

* Sentence analysis based on recognition of action and its anticipated arguments
(picture producers)

* Discourse analysis based on script of anticipated actions




SHRDLU

* 1972: Terry Winograd: SHRDLU (MIT)

* Scripts, plans, goals, and semantic roles for processing natural language

commands with pre-coded patterns

* One of the first question-answering systems

Person: Pick up a big red block.

Computer: OK.

Person: Grasp the pyramid.

Computer: | don't understand which pyramid you mean.

Person (changing their mind): Find a block which is taller than the one you are holding and put it into the box.
Computer: By "it", | assume you mean the block which is taller than the one | am holding.
Computer: OK.

Person: What does the box contain?

Computer: The blue pyramid and the blue block.

Person: What is the pyramid supported by?

Computer: The box.

Person: How many blocks are not in the box?

Computer: Four of them.

Person: Is at least one of them narrower than the one which | told you 1o pick up?
Computer: Yes, the red cube.
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Frames

* 1975: Marvin Minsky (MIT): father of artificial intelligence:

* Pre-coded patterns to analyze text are represented as frame-based knowledge
representations

* Possible ordered in scripts

1927-2016 ‘
P




2. What is possible now?
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Human language understanding

* Recognizing actions and states and the actors that play a role in the events,
. . . . . o o n " " "
which includes semantic role labeling, i.e., recognizing "who" does "what",
" non " " ”
where’, "when" and "how

* Coreferent resolution, i.e., identifying coreferring expressions in a discourse
(e.g., that refer to the same entity)

* Recognizing temporal and spatial relations between actions and entities, and
identification of other relationships

* Detecting modality, i.e., the factual status of a statement, which can involve
negation, possibility and obligational entailments of statements
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Human language understanding

* Often entails making inferences :
* With information found in the discourse

* With background knowledge that speaker/writer and audience possess:
world, commonsense and domain knowledge

* With other contextual knowledge
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Today’s language understanding systems

* Linguistic pipelines composed of preprocessing, morpho-syntactic analysis,
semantic and discourse processing (semantic roles, negation detection,
coreference resolution, temporal and spatial information extraction, etc.) and

final mapping to formal representation
* Individual systems are trained on annotated text corpora
* Output of one system serves as input (features) for the next system in the
pipeline
* Disadvantages:
* Errors made earlier in the pipeline propagate

* Dependent on developed language resources (annotated corpora)
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Today’s language understanding systems

* End-to-end systems implementing deep learning (often realized by a deep
neural network):

* Input = text or some distributional semantic representation of text

* Output = formal representation (e.g., into a sequence of labels)

* Deep layers model the linguistic patterns Deep neural network

bidden lagwr 1 Baddon baver 2 hidden layer 3

* Disadvantage:
* Many annotated training data needed,

mitigated in multitask settings where a task

can be trained with its own data
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Today’s language understanding systems

* Hybrid systems: e.g.,
* Leveraging (uncertain) linguistic annotations/features as well as training
from raw input
* Input = text and linguistic annotations
* QOutput = formal representation (e.g., into a sequence of labels)
* Inference to compute best fusion of results of individual systems and
mapping to outputs
* Advantage:
* Less training data needed

* Some recovery from errors
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Today’s language understanding systems

* Inferencing in natural language understanding is traditionally realized by logical
reasoning with symbolic representations that are logical in nature [Bunt et al.
Computing Meaning 2014]

* Recently statistical inference has emerged with representations that are Bayesian or

algebraic in nature, and that can be composed (e.g., by simple additions of vectors):
but very little is known ...
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Today’s understanding systems

m Output of a language understanding system =
* Other discrete symbolic representation, often referred to as semantic parsing:
e Semantic labels [Liang & Potts Ann. Rev. Ling. 2015]
* Logical expressions
* Task specific commands or instructions in a programming language

* Continuous representation:

* Numerical representations such as vectors and matrices that capture the meaning
of an utterance or of a larger discourse unit

* Translation to other natural language or to other modality
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An example of language understanding seen as
machine translation

* = bringing text to life = ultimate test of machine understanding
of language

* Render children’s stories (use case in this presentation) and
patient education guidelines as 3D-virtual worlds:
http: / /www.muse-project.eu/
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MUSE project

°*  MUSE: Machine Understanding for interactive StorytElling

* Algorithms for translating text into virtual worlds, 9/201 2-
11/2015, EU FP7-296703 (FET-open call)

Institut “Jozef Stefan”

' Z Teesside
/ University
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MUSE = test case of language understanding

* Bringing text to life

* Render children’s stories as 3D-virtual worlds: http://www.muse-project.eu/

http:/ /roshi.cs.kuleuven.be /
muse demon/# /children-story
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The MUSE approach

* Translate the sentences of the children’s story to a knowledge
representation that steers the graphical engine

* Deep learning ? but problem of lack of training data to build end-to-
end system

* Deep translation was restricted to finding related /equivalent word
patterns, but still reliance on common natural language processing
subtasks

* => Hybrid of a linguistic pipeline and some deep learning
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EXAMPLE OF THE MAPPING OUTPUT

[ “He practiced using a spear and even knew how to cut up animals™ |

semantic frame #1
action char—subj  char—obj  obj/item tool direction
to practice tuk none none spear none
semantic frame #4
action char—subj  char—obj  obj/item tool direction
(o cut tuk none animals knife none

Symbolic representation in first-order Iogic- :

using UnityEngine;

using System.Collections; U nity SCFiptS

public class ExampleBehaviourScript : MonoBehaviour
{
void Update()
{
if (Input.GetKeyDown(KeyCode.R))

{
GetComponent<Renderer> ().material.color -~ Color.red;
i
if (Input.GetKeyDown(KeyCode.G))
{
GetComponent<Renderer=>().material .color - Color.green; .
; Rendering
if (Input.GetKeyDown(KeyCode.B)) e e
{

GetComponent<Renderer>().material.color = Color.blue;
}

Tuk knew how to cut up different animals
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The MUSE approach

* Lack of annotated training examples (we only used two unrelated
annotated stories)

* => goal is to combine all evidences to realize the mapping to the
knowledge representation: use of a Bayesian framework for
uncertainty reasoning

* Bayesian framework allows to add linguistic annotations, raw text
features + any available world, commonsense and domain knowledge
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The MUSE approach

* At the sentence level recognition of:

* Actions/events and their semantic

roles (actor, patient, instrument, ....) Mapping to knowledge representation that

* At the discourse level recognition of: - steers the virtual world =

)

* Coreferent noun phrases semantic parsing of the narrative

* Temporal relations between actions

* Spatial relations between objects

Inference with Bayesian

network

[Do Thi et al. EBLP 2016]
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Text + its generic
8 Knowledge

syntactic and =

. ] representation
semantic annotations

Reusable for all kinds of texts Domain and task specific

Mapping
framework

|

Optimization framework allowing for
inclusion of supervision
and background knowiedge

Figure 1: The general architecture for translating text in a knowledge representation.

[MUSE Scientific Report 201 5]
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Mapping to a knowledge representation

[Ludwig et al. IEEE Trans. on Comp. Intell. and Al in
Games 2017]

Fig. 2. Graphical'model oftheac.iopted statis?ica] framework, in w!lich X_1 ¢q = vector of fea’rures, modeling outputs of the
represents the action of the previous semantic frame, Xo the action of the .
current frame, and X1 ... Xy, their arguments. semantic role labeler, coreference resolver, etc.,

sometimes in the form of a constraint
09q¢’q (T(q‘iﬁpaq’f)

P (X4 = B | Py, [18s) =
( q x(q,l)l q f‘ q) ;Sq|1 egq‘bq(m(q,h)!Paq’f) rule
1=

Hq = parameters to be learned

argmax P(X_;,Xo...., XN, | f30-1,...,6n,)
X_1,Xo0.... XN,
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Implicit semantic role labeling

* Content is often left implicit in a story, but inferred by readers
* “Tuk thought a lot about the day that he would hunt his first animal.”
If we would visualize his thought:

the location is not made explicit :
Outside snow fields in the artic world
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Implicit semantic role labeling

* Improving implicit semantic role labeling by predicting semantic frame arguments in

texts
[Phelp:A0 Olympics:AM-LOC EOS] [Phelp:A0 Olympics:AM-LOC EOS] 2 d I h . I
Softmax layer models that Imp ement an
| encoder —decoder

LSTM LSTM tstmiayer  architecture trained on large corpus

I ;"\ with noisy SRL annotations
Embedding layer

[Do Thi et al. JCNLP 2017]

[swam:PRED Phelp:A0 Olympics:AM-LOC] [swam Phelp Olympics] [PRED A0 AM-LOC]
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Implicit semantic role labeling

The task is to infer and instantiate the missing semantic roles given a number of
possibilities from the discourse

P R FI -+ Use WordNet and
Gerber and Chai (2010) 445 404 42.3 mqnuq”y annotated iSRL data
Laparra and Rigau (2013)  47.9 43.8 45.8
Schenk and Chiarcos (2016) 33.5 39.2 36.1 \

Use WordNet, named entity annotations,

Model 1 48.0 38.2 426 and manual semantic category mappings
Model 2 52.6 41.0 46.1
Table 1: Implicit role labeling evaluation. [Do Thi et al. IJCNLP 2017]

Through the deep learning representations we are able to transfer valuable knowledge
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Other inferences

* Language of stories is often more abstract than the details needed to
render the actions in a virtual world:

* To a certain extent - but not completely - solved by word
representations and dependency on previous action in the story

sonel) drink
eat
-1t sit take o
sharp

hold

take care
-2 (o] 2 4 6

Fig. 3. Two-dimensional PCA projection for the vectorial representation
of the words “take” and “care”, beyond some low-level action instances, in
red, and the vectorial composition pog (take care) = pog(take)—+
pog(care) in blue.
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3. What is still needed?
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MUSE :

* Can we learn representations that capture world and commonsense
knowledge ¢

* Can we learn representations that are better suited for translating to other
modality?
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The role of world and commonsense knowledge

* To truthfully render the content of a text in a virtual world: a large amount of world
and commonsense knowledge is needed because content is:
* Not made explicit
He helped to make ready the dog sled for each trip * Communicated in a more abstract way
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Representation learning

* Over decades symbolic representation languages that use a limited symbolic
vocabulary were developed, many of which follow first-order logic as underlying
knowledge representation formalism:

* A primary goal is to facilitate reasoning about the world, rather than taking action
in it (Davis 1993)

* They form yet another human language - albeit usually less complex -, and are
prone to ambiguity and redundancy (Ritter et al. 2006)
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Representation learning

* Qualitative symbolic representations of language are not scalable:
* Impossible to learn models for all types of objects, attributes, relationships
* Many different “label” structures
* Poses practical problems of scalability

* Still need to be translated to the real-world physical space in many real-world
applications
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4. What are important properties that models
should have?
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What Does It Mean
to Understand Language?

TERRY WINOGRAD

Stanford University

Comprehension Action

~{ Representation >
Sentences Structures } World

w gt w

Generalion { ) Fercaphion

Reasoning
Figure 1. Basic A1 model of language understanding. [Winograd 1980]
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Learning anticipatory representations from language
and visual data

* Cognitive and neuroscience studies: human brain uses anticipation to perform tasks
very efficiently [Friston Nature 2010, Vernon Artif. Cogn. Syst. 2014 p. 2]:

* Based on lifelong verbal and perceptual experiences a human anticipates what
events might occur in his or her environment

* When humans read texts :

* A reader’s comprehension system continuously makes predictions about what

-

information will be presented next in the text 'N_W"

[Kurby & Zacks Cogn. Neurosc. of Nat. Lang. Use 2015,

Lambon Ralph et al. Neuroscience 2017] All summer long, they roamed through the woog
plains,playing games and having fun. None wé&
three little pigs, and they easily made friend S
Wherever they went, they were given a welcome, but as
summer drew to a close, they realized that folk were drifting back
to their usual jobs, and preparing for winter.
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Learning anticipatory representations from language
and visual data

* Neuroscientists demonstrate the existence in the brain of: [Handjaras et al. Neurolmage
2016, Lambon Ralph et al. op. cit. 2017]

* Large scale modality independent conceptual representations
* Small scale modality dependent and category specific representations

* Storage of anticipated events as template structures that are independent of the
various distinctive contexts that might be encountered, providing a basis for
conceptual generalization
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Grounding representations in perception

* When humans imagine events:

* Multiple forms of mental imagery exist: e.g., [Moulton & Kosslyn Philos. Trans. Roy.
Soc. 2009]

* Object-based (of shapes, colors),
* Spatial (e.g., of locations)
* Auditory

* Motoric
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Requirements of representations usable by a machine

* Reflecting the real world:
* By nature relational: involves some degree of scene reconstruction with key
elements (actions, people, objects, settings and their relations)
* |Invariant to:
* Paraphrasing of language

* Physical permutations that do not change the meaning of its language description

* At different levels of abstraction:
* Group objects that behave similarly
* Compositional in nature

* Predictive /anticipator
/ P 7 [Moens Arg. & Computation 201 8]
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Requirements of representations usable by a machine

* Compositional in nature:
* Allowing to represent and constrain more complex scenes or discourses
* Allowing to infer implicit or obfuscated information

* Allowing to deal with recursion in language grammar

* Predictive:

* Allowing fast parsing

[Moens Arg. & Computation 201 8]
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Machine learning requirements

* Initial representations can be learned from large datasets (e.g., perception paired with
language)
* Supervised in sense that language describes image

* Weakly supervised

* Incremental learning:
* Representations can be adjusted to fit a task

* With little or no supervision
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Evaluation of HLU

What is understanding?

To understand a statement is to:

: . . . i . => o o o
+ determine its truth (with justification) Among others, visualization of language

« calculate its entailments => Inference with quantitative representations
* take appropriate action in light of it => Translation to events in a real physical space
* translate it into another language => Translation to other modality

[ MacCartney & Potts 2016]  We might need novel evaluation metrics besides the existing
narrowly focused task-based metrics
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Still a large program to realize in language
understanding by an intelligent machine
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5. Imagery to empower automated language
understanding
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The role of world and commonsense knowledge

Going back to translation of language to events happening in a virtual world:

He learned to sharpen a hunting spear:
where is the spear located in relation to the body of the actor,
concerning the sharpen action?

He helped to make ready the dog sled for each trip:
what actions does this involve in an arctic environment?
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Could we learn world or commonsense knowledge
from visual data?

°* MUSTER project: MUltimodal processing of Spatial and TEmporal expRession:
°* How can computer vision improve language understanding?

http: / /www.chistera.eu/projects/muster

[Elliott & Keller EMNLP 201 3]

w Leuven

A man is riding a bike down the road.
A car and trees are in the background.

2016-2019

UNIVERSITE _ !
\Quz__l}m:a MARIE CURIE

Unversidad  Euskal Herriko
del Pais Vasco  Unibertsitatea
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MUSTER: Learning from visual data

* Learn world or commonsense knowledge from visual data

* Deep learning offers a joint methodology for processing language and other
modalities

* Deep learning : to learn temporal and spatial knowledge from visual data or
from visual data aligned with textual data, and integrate this knowledge in
suitable representations for language understanding

* Only the acquisition of a fraction of world knowledge needed for language
understanding, but very useful for language understanding
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MUSTER project

* QI. How to automatically create text representations in the form of single-word and
multi-word embeddings that integrate perceptual knowledge in the representations of
objects, actions, their spatial and temporal relations¢ Problem of multimodal
representation construction

* Q2. How to use the novel improved semantic representations (i.e., embeddings) to improve
machine understanding of human language?¢ Problem of multimodal representation
integration and usage
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Multimodal representations of words

* Multimodal representations of words obtained by mapping of the textual
word embeddings of the word to its visual image: proven usefulness in word
similarity tasks

* Integrating vision and language in a single multimodal representation:

* Learning of a language-to-vision mapping

* Output of the mapping = vector representation of the imagined
concept

* = cognitively plausible way of building representations, consistent with

the inherently reconstructive and associative nature of human memory

[Collell et al. AAAI 2017]
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w, = truck x

w, = banjo

w, = coat

4

CBOW/ Learnf ‘

) -~
= 3
51.‘ oL L LD E|_|||I|I|]x'|]v1
g‘MHIH = NI NEN

Map word embeddings with f

/ ‘ [Collell et al. AAAI 2017]
[TTTTT] o ERENER

Concatenate

o~y

Figure 1: Overview of our model. The imagined representa-
tions are the outputs of a text-to-vision mapping.
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[Collell et al. AAAI 2017]

Figure 2: Architecture of the linear (left) and neural network
(right) mappings.
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Wordsim353 MEN SemSim VisSim Simlex999
ALL VIS 7S ALL VIS 7S ALL VIS 7S ALL VIS 7S ALL VIS 7S
Silberer & Lapata 2014 - - - - - - 0.7 - - 0.64 - - - - -
Lazaridou et al. 2015 - - - 0.75 0.76 - 0.72  0.72 - 0.63 0.63 - 0.4 0.53 -
Kiela & Bottou 2014 - 0.61 - - 0.72 - - - - - - - - - -
GloVe 0.712 0.632 0.705 0.805 0.801 0.801 [ 0.753 0.768 0.701 [ 0.591 0.606 0.54 [ 0.408 0371 0.429
CNN g4 - 0.448 - - 0.593 - - 0.534 - - 0.56 - - 0.406 -
CONC e 0.606 : - 0.8 - - 0.734 - - 0.651 = = 0.442 .
MAPx N 0.443 0534 0.391 0703 0761 0.68 | 0729 0.732 0.718 | 0.658 0.659 0.655 | 0.322 0.451 0.296
MAP;;,, 0.402 0.539 0.366 0701 0774 0.674 | 0.738 0.738 0.74 | 0.646 0.644 0.651 | 0.322 0412 0.286
MAP-Cnn 0.687 0.644 0.673 0813 082 0806 0783 0791 0.754 | 0.65 0.657 0.626 | 0405 0.404 0.417
MAP-Ciin 0.694  0.649 0.684 0811 0.819 0.802 | 0.785 0.791 0.764 | 0.641 0.647 0.623 | 041 0.388 0422
# inst. 353 63 290 3000 795 2205 | 6933 5238 1695 | 6933 5238 1695 | 999 261 738
Wordsim353-rel Wordsim3353-sim SimVerb-3500
ALL VIS 7S ALL VIS 7S ALL VIS 7S
GloVe 0.644 0759 0.619 | 0.802 0.68%8 0.783 | 0.283 0.32 0.282
, 22 - - s - , 235 -
Cova | T 0D B o B | [Collell et al. AAAI 2017]
MAP NN 0.33  0.606 0.267 [ 0.536 0.5399 04751 0.213 0.513 0.21
MAP;;,, 0.28 0.553 0243 | 0.505 0.569 0477 | 0.212 0.338 0.21
MAP-Cyn | 0.623  0.778 0.589 | 0.769 0.696 0.745 | 0.286 0.49  (.284
MAP-Cp;,, | 0.629  0.797 0.601 | 0.781 0.698 0.766 | 0.286 0.371 0.285
# inst. 252 28 224 203 45 158 | 3500 41 3459

Table 1: Spearman correlations between model predictions and human ratings. For each test, ALL correspond to the whole set
of word pairs, VIS to those pairs for which we have both visual representations, and ZS denotes its complement, i.e., zero-shot
words. Boldface indicates the best results per column and # inst. the number of word pairs in each region (ALL, VIS, ZS). We
notice that comparison methods are not available for test sets in the second row. Additionally, the VIS subset of the compared
methods is only approximated, as the authors do not report the exact evaluated instances.
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* Other realizations of learning meaning representations of words in

MUSTER:
* [Zablocki et al. AAAI 201 8]: multimodal word embeddings
* [Artetxe et al. AAAI 2018] : bilingual word embeddings
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Representations of object attributes

* Vision and language provide complementary information that, properly combined, can
potentially yield more complete concept representations
* Study of visual and linguistic representations:

* Which attributes are generally better captured by either the vision or by the
language modality?

* What type of attributes or semantic knowledge are better encoded by each
modality?

[Collell & Moens COLING 201 6]
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Learning

Testing

predict

I Has legs?

aligator [7.1,826 eee 91] —> 1

. aligator sz 325 ... 28] —> ()

Attribute
X= visual repr. (CNN)  v=Has legs?
airplane [13,-326, idw aa2m)
S dog [7.1,825, 9.1] Model
0 Visual
=
cat [2.1,-2.6, ase ~1.2]
X= word embeddings  Y=Has
% airplane (13325 ... 92.5]
O dog [2.1,218, oas 5.7)
~ Model
(&)}
- Language
S cat [1.6,-2.1, A2]

predict

[Collell & Moens COLING 20146]

Figure 1: Overview of our experimental setting. Attributes are learned from the embeddings of each
modality (left side), and afterwards new concepts are classified on whether the attribute is present or
not (classification) or to which degree the attribute is present (regression). For clarity, we omitted the
regression problem since its setting is identical to classification except for a continuous output ) instead

of 0/1.
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Figure 4: Averages of performance difference per attribute type. For each attribute type (e.g., taxonomic,
taste, etc.), the bar indicates the average performance difference of its set of attributes. Plot A shows
performance difference between VIS, and GloVe and B between V15, and GloVe. As in Fig. 3,
positive bars indicate better performance of visual embeddings and negative bars otherwise. Error bars
show standard error.
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Figure 3: Difference of performance between V'15,,, minus GloVe. Attributes are shown on the hor-
izontal axis and grouped by their type. Positive bars indicate better performance of visual embeddings
and negative bars otherwise. Results with V' 1.5,,,,, are omitted as they exhibit almost identical patterns
as V' 1.S,,4, yet slightly worse.
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Representations of spatial knowledge

A girl rides a horse

* Where is the horse located, where is the girl located in relation to the horse?

* Can we build suitable representations that caption this knowledge and potentially make
inferences with it?
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Representations of spatial knowledge

* Focus on spatial understanding of language and representing language with spatial
templates = regions of acceptability of two objects under a spatial relationship

* Prior work restricts spatial templates to language that explicitly uses spatial cues (e.g.,
“glass on table”) [Logan and Sadler Language, Speech, and Communication 1996,

Moratz and Tenbrink Spatial Cognition and Computation 2006, Malinowski and Fritz
arXiv 2014]

* We extend this concept to implicit spatial language, i.e., those relationships (generally
actions) for which the spatial arrangement of the objects is only implicitly implied (e.g.,
“man riding horse”) => requires significant commonsense spatial understanding [Collell

& Moens TACL 201 8]
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We propose the task of:
* Given a structured text input of the form (Subject, Relationship, Object) = (S,R,O)

* Predict the 2D relative spatial arrangement of two objects (output)

Train the task in a supervised setting:

* Training set of image-text pairs, where the size and location of bounding boxes of
objects in images serve as ground truth

= a spatial “question-answering" task where the question consists in a spatial
commonsense query such as where is the “man" located with respect to a “horse" when a
“man" is “feeding" the “horse"?

The answer is a 2D “imagined” representation in contrast with a sentence /word as
typically done in question-answering tasks
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General approach

* Neural network approach (simple feedforward neural network):

* Input: triplet of words, optionally size of subject

Embedding layer: aim is to generalize over unseen words by using embedding
look-up (e.g., Glove [Pennington et al. EMNLP 201 4])

Concatenation of the triplet embedding and possibly size of subject

Composition layer: to build a compositional representation

Output layer: coordinates and size of predicted object (i.e., the bounding box)

Objective function: mean squared error loss
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[Collell et al. AAAI 201 8]
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Experimental set-up

* Source of annotated images:
* Visual Genome data set [Krishna et al. CVPR 2016]

* 108K images with 1,5M human-annotated (Subject, Relationship, Object) instances
with bounding boxes for Subject and Object

[ dog, catches, frisbee ][ boy, feeds, giraffe ][ man, throws, frisbee ][ cat, wears glasses ]
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Experimental set-up

* Keep ftriplets for which pretrained word embeddings are available:

* Implicit spatial relationships: 378K instances: 2,183 unique relationships and 5,614
unique obijects

* Explicit spatial relationships: 852K instances, 31 unique spatial prepositions and 6,749
unique objects
* Evaluation metrics:
* Mean Squared Error (MSE) between predicted and true object center and size
* Coefficient of Determination (R?) between the predicted and true object center and size
* Pearson Correlation (r) between the predicted and true object x and y coordinates

* Accuracy and F1
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Quantitative evaluation

* 10-fold cross-validation and results averaged over the 10 folds:

MSE  R? acc, Fl, Iy ry

EMB 0.008 0.705 0.756 0.755 0.894 0.834 EMB: Glove embeddings as input
RND 0.008 0691 0.750 0.750 0.891 0.826
IH 0008 0717 0762 0762 0.8% 0842 4 )
ctrrl 0.054 -1.000 0.522 0.521 0.000 -0.001 : 1-hot encodiings as input

Ctrl: control method that outputs random
EMB 0.013 0.586 0.768 0.770 0.811 0.823
RND 0.013 0.580 0.767 0.769 0.808 0.815
IH 0.012 0.604 0.778 0.780 0.815 0.828
ctrl 0.060 -1.000 0.633 0.630 0.000 0.000

RND: Random embeddings as input

Implicit

normal predictions

Explicit

[Collell et al. AAAI 2018]

Table 1: Results on implicit and explicit relations.
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Quantitative evaluation

* 10-fold cross-validation and results averaged over the 10 folds:

Extrapolated No extrapolated
MSE R?  acc, Fl, i Iy MSE R?  acc, Fl, I I
EMB 0.006 0749 0.786 0.789 0.904 0.871 0.008 0.711 0.758 0.759 0.894 0.839

S RND 0.007 0727 0767 0.771 0.899 0.861 0.008 0.701 0.757 0.757 0.893  0.832
= IH 0.006 0.764 0.792 0.795 0.906 0.880 0.007 0.724 0.768 0.768 0.897 0.846
& el 0053 -1.097 0515 0505 0.000 0.001 0.054 -1016 0521 0521 -0.001 -0.001
~ EMB 0.010 0.635 0.747 0.747 0.879 0.793 0.008 0.708 0.760 0.760 0.895 0.836
€ RND 0015 0424 0602 0.597 0853 0.606 0.008 0.694 0.755 0.755 0.892 0.828
BO IH 0.015 0424 0595 0587 0.861 0.6l11 0.008 0.721 0.766 0.766 0.897 0.845

crl  0.054 -1.022 0519 0518 -0.001 0.000 0.054 -1.003 0520 0.520 0.001 0.000

Table 2: Results on the Extrapolated Triplets (top) and Extrapolated Words (bottom) sets (see Sect. 4.2). Right tables show
results in the same sets without imposing extrapolation conditions. i.e., allowing to see all combinations/words during training.

[Collell et al. AAAI 201 8]
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QUCI |i1‘CI1'iV€ evd |UCI1'i0n [Collell & Moens UCL Commonsense 2017]

person, holding, cat man following, eleghan person riding, eleghan

man, flying, kite man, holding, kite man, walking, dog

Figure 2: Predictions by the model that leverages word em-
beddings (EMB). Top: Predictions in unseen words (under-
lined). Bottom: Predictions in unseen triplets.
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QUG Ii'l'd'l'ive evd IUq'l'ion [Collell & Moens UCL Commonsense 2017]

person, holding, cat man foIIowmg, ele hant person riding, e Ieghan [person, riding, elephant][ woman, holding, bag ]
woman, holding, bag woman wearing, shoes man, riding, bike [Woman, wearing, shoes][ man, riding, bike ]
Model: Initialized with distributional word embeddings Model: Initialized with random word embeddings
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* Our work can easily be expanded to predicting relative 3D spatial arrangements of
objects from language input given that suitable training data are available
* Our work has potential for real-time language understanding in a visual context:
* Language communication to robots, machines, self-driving cars, ..

* Translation of spatial language to geometric space opens possibilities of fast
quantitative reasoning in such a space, which can complement qualitative
symbolic representations and reasoning

* Our work is a step towards opening the black box of neural models applied to
language processing by visualizing the interpreted content
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Representations of temporal knowledge

Tuk and his father tied the last things to the sled and then set off

* Entails that:
* Sled dogs are hooked to the sled
* Tuk and his father sit down on the sled

* The sled dogs pull the sled

* Knowledge of scripts:

* Traditionally learned as language models from text [e.g., Jans et al.
EACL 2012, Pichotta and Mooney AAAI 2016]
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MUSTER wants to learn this temporal knowledge from visual data

open door  —— stand up ——>  shake hand

[MUSTER project proposal]

=S =

Figure 2: An example of actions along with their annotations available from the dataset published in
[BOJA14]. One aim of MUSTER will be exploiting such annotations for building multi-modal
representations of actions (MUSTER objective 3) which could then be integrated into systems for

temporal recognition and ordering of actions in text (MUSTER objective 4) which will in turn be
evaulated in temporal HLU tasks (MUSTER objective 5).

First step in this direction: [Vasudevan et al. ACM Multimedia 2017]
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CALCULUS : ERC Advanced Grant, 2018-2023
Commonsense and Anticipation enriched Learning of
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UnderStanding

European Research Council

Established by the European Commission
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6. Conclusions
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Conclusions

The goal of natural language understanding is already there a long time

Today’s neural network based approaches — whether deep or not so deep — have
learned us an interest in continuous representations of meaning:

* Offer a methodology to jointly process language and vision

In this talk: how imagery helps in building richer meaning representations and integrate
commonsense knowledge

More needs to be done:
* To fast parse language
* To fast and incrementally learn

* To make compositions and inferences with the representations that we have learned
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