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What is human language understanding?
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Understanding,  Stanford  University,  2016
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Overview



1.When and how did it all start?
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ELIZA

• 1964-1966: Joseph Weizenbaum (MIT)

• Limited interpretation of a dialogue (with a psycho-analyst)

• Use of pre-coded patterns of language

• http://jerz.setonhill.edu/if/canon/eliza.htm
• http://www.inspiratron.org/Eliza/
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Conceptual dependency theory
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• Late 1960-1977: Roger Schank (Yale University):

• Models that: 
• Use pre-coded patterns of language
• Recognize a number of primitives and predicates in language
• Sentence analysis based on recognition of action and its anticipated arguments 

(picture producers)
• Discourse analysis based on script of anticipated actions



SHRDLU

• 1972: Terry Winograd: SHRDLU (MIT) 
• Scripts, plans, goals, and semantic roles for processing natural language 

commands with pre-coded patterns
• One of the first question-answering systems
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Frames

• 1975: Marvin Minsky (MIT): father of artificial intelligence: 
• Pre-coded patterns to analyze text are represented as frame-based knowledge 

representations
• Possible ordered in scripts
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1927-2016



2. What is possible now?
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Human language understanding

10

• Recognizing actions and states and the actors that play a role in the events, 
which includes semantic role labeling, i.e., recognizing "who" does "what", 
"where", "when" and "how”

• Coreferent resolution, i.e., identifying coreferring expressions in a discourse 
(e.g., that refer to the same entity)

• Recognizing temporal and spatial relations between actions and entities, and 
identification of other relationships

• Detecting modality, i.e., the factual status of a statement, which can involve 
negation, possibility and obligational entailments of statements
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Human language understanding
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• Often entails making inferences :
• With information found in the discourse
• With background knowledge that speaker/writer and audience possess: 

world, commonsense and domain knowledge
• With other contextual knowledge 
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Today’s language understanding systems

• Linguistic pipelines composed of preprocessing, morpho-syntactic analysis, 
semantic and discourse processing (semantic roles, negation detection, 
coreference resolution, temporal and spatial information extraction, etc.) and 
final mapping to formal representation 
• Individual systems are trained on annotated text corpora 
• Output of one system serves as input (features) for the next system in the 

pipeline

• Disadvantages: 
• Errors made earlier in the pipeline propagate
• Dependent on developed language resources (annotated corpora)

12 HLU  Summer  School  10-4-2018



Today’s language understanding systems

• End-to-end systems implementing deep learning (often realized by a deep 
neural network): 
• Input = text or some distributional semantic representation of text
• Output = formal representation (e.g., into a sequence of labels)

• Deep layers model the linguistic patterns

• Disadvantage:
• Many annotated training data needed, 
mitigated in multitask settings where a task 
can be trained with its own data
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Today’s language understanding systems

• Hybrid systems: e.g., 
• Leveraging (uncertain) linguistic annotations/features as well as training 

from raw input
• Input = text and linguistic annotations
• Output = formal representation (e.g., into a sequence of labels)

• Inference to compute best fusion of results of individual systems and 
mapping to outputs

• Advantage:
• Less training data needed
• Some recovery from errors
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Today’s language understanding systems

• Inferencing in natural language understanding is traditionally realized by logical 
reasoning with symbolic representations that are logical in nature [Bunt et al. 
Computing Meaning 2014]

• Recently statistical inference has emerged with representations that are Bayesian or
algebraic in nature, and that can be composed (e.g., by simple additions of vectors): 
but very little is known …
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Today’s understanding systems

16

■Output of a language understanding system = 

• Other discrete symbolic representation, often referred to as semantic parsing:

• Semantic labels 

• Logical expressions

• Task specific commands or instructions in a programming language

• Continuous representation:

• Numerical representations such as vectors and matrices that capture the meaning 
of an utterance or of a larger discourse unit

• Translation to other natural language or to other modality

[Liang  &  Potts  Ann.  Rev.  Ling.  2015]
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An example of language understanding seen as 
machine translation

• = bringing text to life = ultimate test of machine understanding 
of language
• Render children’s stories (use case in this presentation) and 

patient education guidelines as 3D-virtual worlds: 
http://www.muse-project.eu/
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MUSE project

• MUSE: Machine Understanding for interactive StorytElling
• Algorithms for translating text into virtual worlds, 9/2012-

11/2015, EU FP7-296703 (FET-open call)
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MUSE = test case of language understanding

14

• Bringing text to life 
• Render children’s stories as 3D-virtual worlds: http://www.muse-project.eu/

10

http://roshi.cs.kuleuven.be/
muse_demon/#/children-story
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The MUSE approach

20

• Translate the sentences of the children’s story to a knowledge 
representation that steers the graphical engine
• Deep learning ? but problem of lack of training data to build end-to-

end system
• Deep translation was restricted to finding related/equivalent word 

patterns, but still reliance on common natural language processing 
subtasks
• => Hybrid of a linguistic pipeline and some deep learning 
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Symbolic  representation  in  first-order  logic

Unity  scripts

Rendering
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The MUSE approach

• Lack of annotated training examples (we only used two unrelated 
annotated stories) 
• => goal is to combine all evidences to realize the mapping to the 

knowledge representation: use of a Bayesian framework for 
uncertainty reasoning 
• Bayesian framework allows to add linguistic annotations, raw text 

features + any available world, commonsense and domain knowledge
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• At the sentence level recognition of:
• Actions/events and their semantic 

roles (actor, patient, instrument, …) 

• At the discourse level recognition of:
• Coreferent noun phrases 
• Temporal relations between actions
• Spatial relations between objects

Mapping to knowledge representation that 
steers the virtual world =

semantic parsing of the narrative 

23

The MUSE approach

Inference with Bayesian
network 

[Do  Thi et  al.  EBLP  2016]  
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[MUSE Scientific Report 2015]
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Mapping to a knowledge representation

25

𝜙" = vector of features, modeling outputs of the
semantic role labeler, coreference resolver, etc.,
sometimes in the form of a constraint 
rule 
𝜃"	  = parameters to be learned 

[Ludwig et al. IEEE Trans. on Comp. Intell. and AI in 
Games 2017]
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Implicit semantic role labeling

• Content is often left implicit in a story, but inferred by readers

• “Tuk thought a lot about the day that he would hunt his first animal.”

26

If we would visualize his thought: 
the location is not made explicit : 
Outside snow fields in the artic world
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Implicit semantic role labeling

• Improving implicit semantic role labeling by predicting semantic frame arguments in 
texts

27

2 models that implement an 
encoder –decoder 
architecture trained on large corpus
with noisy SRL annotations

[Do  Thi et  al.  IJCNLP 2017]
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Implicit semantic role labeling

28

Use WordNet, named entity annotations,
and manual semantic category mappings

Use WordNet and
manually annotated iSRL data

Through the deep learning representations we are able to transfer valuable knowledge 

[Do  Thi et  al.  IJCNLP  2017]

The task is to infer and instantiate the missing semantic roles given a number of 
possibilities from the discourse
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Other inferences

• Language of stories is often more abstract than the details needed to 
render the actions in a virtual world: 
• To a certain extent - but not completely - solved by word 

representations and dependency on previous action in the story
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3. What is still needed?
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• Can we learn representations that capture world and commonsense 
knowledge ? 

• Can we learn representations that are better suited for translating to other 
modality? 
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MUSE :



The role of world and commonsense knowledge

32

• To truthfully render the content of a text in a virtual world: a large amount of world 
and commonsense knowledge is needed because content is:

He  helped  to  make  ready  the  dog  sled  for  each  trip
• Not made explicit
• Communicated in a more abstract way
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• Over decades symbolic representation languages that use a limited symbolic 
vocabulary were developed, many of which follow first-order logic as underlying 
knowledge representation formalism:
• A primary goal is to facilitate reasoning about the world, rather than taking action 

in it (Davis 1993)
• They form yet another human language - albeit usually less complex -, and are 

prone to ambiguity and redundancy (Ritter et al. 2006)
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Representation learning



• Qualitative symbolic representations of language are not scalable:
• Impossible to learn models for all types of objects, attributes, relationships 
• Many different “label” structures
• Poses practical problems of scalability
• Still need to be translated to the real-world physical space in many real-world 

applications
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Representation learning



4. What are important properties that models 
should have? 
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[Winograd 1980]
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• Cognitive and neuroscience studies: human brain uses anticipation to perform tasks 
very efficiently [Friston Nature 2010, Vernon Artif. Cogn. Syst. 2014 p. 2]:
• Based on lifelong verbal and perceptual experiences a human anticipates what 

events might occur in his or her environment
• When humans read texts :  

• A reader’s comprehension system continuously makes predictions about what 
information will be presented next in the text
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Learning anticipatory representations from language 
and visual data 

All  summer  long,  they  roamed  through  the  woods  and  over  the  
plains,playing games  and  having  fun.  None  were  happier  than  the  
three  little  pigs,  and  they  easily  made  friends  with  everyone.  
Wherever  they  went,  they  were  given  a  warm  welcome,  but  as  
summer  drew  to  a  close,  they  realized  that  folk  were  drifting  back  
to  their  usual  jobs,  and  preparing  for  winter.  

[Kurby & Zacks Cogn. Neurosc. of Nat. Lang. Use 2015,
Lambon Ralph et al. Neuroscience 2017]



• Neuroscientists demonstrate the existence in the brain of: [Handjaras et al. NeuroImage
2016, Lambon Ralph et al. op. cit. 2017]
• Large scale modality independent conceptual representations 
• Small scale modality dependent and category specific representations 
• Storage of anticipated events as template structures that are independent of the 

various distinctive contexts that might be encountered, providing a basis for 
conceptual generalization
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Learning anticipatory representations from language 
and visual data 



• When humans imagine events: 
• Multiple forms of mental imagery exist: e.g., [Moulton & Kosslyn Philos. Trans. Roy. 

Soc. 2009]
• Object-based (of shapes, colors), 
• Spatial (e.g., of locations)
• Auditory
• Motoric 
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Grounding representations in perception



• Reflecting the real world:
• By nature relational: involves some degree of scene reconstruction with key 

elements (actions, people, objects, settings and their relations)

• Invariant to:
• Paraphrasing of language
• Physical permutations that do not change the meaning of its language description

• At different levels of abstraction:
• Group objects that behave similarly
• Compositional in nature
• Predictive/anticipatory
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Requirements of representations usable by a machine

[Moens Arg. & Computation 2018]



• Compositional in nature:
• Allowing to represent and constrain more complex scenes or discourses
• Allowing to infer implicit or obfuscated information
• Allowing to deal with recursion in language grammar

• Predictive:
• Allowing fast parsing
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Requirements of representations usable by a machine

[Moens Arg. & Computation 2018]



• Initial representations can be learned from large datasets (e.g., perception paired with 
language)
• Supervised in sense that language describes image
• Weakly supervised

• Incremental learning:
• Representations can be adjusted to fit a task
• With little or no supervision 
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Machine learning requirements
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Evaluation of HLU

[ MacCartney &  Potts  2016]

=> Among others, visualization of language

=> Inference with quantitative representations

=> Translation to events in a real physical space

=> Translation to other modality

We might need novel evaluation metrics besides the existing 
narrowly focused task-based metrics 



Still a large program to realize in language 
understanding by an intelligent machine
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5. Imagery to empower automated language 
understanding
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The role of world and commonsense knowledge

Going back to translation of language to events happening in a virtual world:

He learned to sharpen a hunting spear: 
where is the spear located in relation to the body of the actor, 
concerning the sharpen action?

He helped to make ready the dog sled for each trip: 
what actions does this involve in an arctic environment?
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Could we learn world or commonsense knowledge 
from visual data?

[Elliott & Keller EMNLP 2013]

• MUSTER project: MUltimodal processing of Spatial and TEmporal expRession:  

• How can computer vision improve language understanding?

http://www.chistera.eu/projects/muster

2016-2019
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MUSTER: Learning from visual data

48

• Learn world or commonsense knowledge from visual data 

• Deep learning offers a joint methodology for processing language and other 
modalities

• Deep learning : to learn temporal and spatial knowledge from visual data or 
from visual data aligned with textual data, and integrate this knowledge in 
suitable representations for language understanding

• Only the acquisition of a fraction of world knowledge needed for language 
understanding, but very useful for language understanding
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MUSTER project

• Q1. How to automatically create text representations in the form of single-word and 
multi-word embeddings that integrate perceptual knowledge in the representations of 
objects, actions, their spatial and temporal relations? Problem of multimodal 
representation construction

• Q2. How to use the novel improved semantic representations (i.e., embeddings) to improve 
machine understanding of human language? Problem of multimodal representation 
integration and usage
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Multimodal representations of words

• Multimodal representations of words obtained by mapping of the textual 
word embeddings of the word to its visual image: proven usefulness in word 
similarity tasks

• Integrating vision and language in a single multimodal representation: 
• Learning of a language-to-vision mapping
• Output of the mapping = vector representation of the imagined 

concept 
• = cognitively plausible way of building representations, consistent with 

the inherently reconstructive and associative nature of human memory

50

[Collell et al. AAAI 2017]
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[Collell et al. AAAI 2017]
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[Collell et al. AAAI 2017]
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[Collell et al. AAAI 2017]
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• Other realizations of learning meaning representations of words in 
MUSTER:
• [Zablocki et al. AAAI 2018]: multimodal word embeddings
• [Artetxe et al. AAAI 2018] : bilingual word embeddings
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Representations of object attributes

55

• Vision and language provide complementary information that, properly combined, can 
potentially yield more complete concept representations

• Study of visual and linguistic representations: 
• Which attributes are generally better captured by either the vision or by the 

language modality?
• What type of attributes or semantic knowledge are better encoded by each 

modality?

[Collell & Moens COLING 2016]
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[Collell & Moens COLING 2016]
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[Collell & Moens COLING 2016]
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[Collell & Moens COLING 2016]
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Representations of spatial knowledge

59

A girl rides a horse

• Where is the horse located, where is the girl located in relation to the horse? 

• Can we build suitable representations that caption this knowledge and potentially make 
inferences with it?
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Representations of spatial knowledge

60

• Focus on spatial understanding of language and representing language with spatial 
templates =  regions of acceptability of two objects under a spatial relationship

• Prior work restricts spatial templates to language that explicitly uses spatial cues (e.g., 
“glass on table”) [Logan and Sadler Language, Speech, and Communication 1996, 
Moratz and Tenbrink Spatial Cognition and Computation 2006, Malinowski and Fritz 
arXiv 2014]

• We extend this concept to implicit spatial language, i.e., those relationships (generally 
actions) for which the spatial arrangement of the objects is only implicitly implied (e.g., 
“man riding horse”) => requires significant commonsense spatial understanding [Collell
& Moens TACL 2018]

•
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• We propose the task of:
• Given a structured text input of the form (Subject, Relationship, Object) = (S,R,O)
• Predict the 2D relative spatial arrangement of two objects (output)

• Train the task in a supervised setting:
• Training set of image-text pairs, where the size and location of bounding boxes of 

objects in images serve as ground truth

• = a spatial  “question-answering" task where the question consists in a spatial 
commonsense query such as where is the “man" located with respect to a “horse" when a
“man" is “feeding" the “horse"?

• The answer is a 2D  “imagined” representation in contrast with a sentence/word as 
typically done in question-answering tasks
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General approach

62

• Neural network approach (simple feedforward neural network): 
• Input: triplet of words, optionally size of subject
• Embedding layer: aim is to generalize over unseen words by using embedding 

look-up (e.g., Glove [Pennington et al. EMNLP 2014])
• Concatenation of the triplet embedding and possibly size of subject
• Composition layer: to build a compositional representation 
• Output layer: coordinates and size of predicted object (i.e., the bounding box)
• Objective function: mean squared error loss
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[Collell et al. AAAI 2018]
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Experimental set-up

65

• Source of annotated images: 
• Visual Genome data set [Krishna et al. CVPR 2016]
• 108K images with 1,5M human-annotated (Subject, Relationship, Object) instances 

with bounding boxes for Subject and Object

dog, catches, frisbee boy, feeds, giraffe man, throws, frisbee cat, wears glasses
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Experimental set-up

66

• Keep triplets for which pretrained word embeddings are available: 
• Implicit spatial relationships: 378K instances: 2,183 unique relationships and 5,614 

unique objects
• Explicit spatial relationships: 852K instances, 31 unique spatial prepositions and 6,749 

unique objects

• Evaluation metrics:
• Mean Squared Error (MSE) between predicted and true object center and size
• Coefficient of Determination (R2) between the predicted and true object center and size
• Pearson Correlation (r) between the predicted and true object x and y coordinates
• Accuracy and F1
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Quantitative evaluation

67

• 10-fold cross-validation and results averaged over the 10 folds:

EMB: Glove embeddings as input
RND: Random embeddings as input
1H: 1-hot encodings as input
Ctrl: control method that outputs random
normal predictions
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Quantitative evaluation
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• 10-fold cross-validation and results averaged over the 10 folds:
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[Collell et al. AAAI 2018]



Qualitative evaluation
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[Collell & Moens UCL Commonsense 2017]



Qualitative evaluation
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Model: Initialized with random word embeddingsModel: Initialized with distributional word embeddings
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[Collell & Moens UCL Commonsense 2017]
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• Our work can easily be expanded to predicting relative 3D spatial arrangements of 
objects from language input given that suitable training data are available

• Our work has potential for real-time language understanding in a visual context: 
• Language communication to robots, machines, self-driving cars, …
• Translation of spatial language to geometric space opens possibilities of fast 

quantitative reasoning in such a space, which can complement qualitative 
symbolic representations and reasoning

• Our work is a step towards opening the black box of neural models applied to 
language processing by visualizing the interpreted content



Representations of temporal knowledge

72

Tuk and his father tied the last things to the sled and then set off

• Entails that:
• Sled dogs are hooked to the sled
• Tuk and his father sit down on the sled
• The sled dogs pull the sled

• Knowledge of scripts:
• Traditionally learned as language models from text [e.g., Jans et al. 

EACL 2012, Pichotta and Mooney AAAI 2016]
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[MUSTER  project  proposal]

MUSTER wants to learn this temporal knowledge from visual data
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First step in this direction:  [Vasudevan et al. ACM Multimedia 2017]
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CALCULUS : ERC Advanced Grant, 2018-2023 
Commonsense and Anticipation enriched Learning of 
Continuous representations sUpporting Language 
UnderStanding



6. Conclusions
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Conclusions

76

• The goal of natural language understanding is already there a long time

• Today’s neural network based approaches – whether deep or not so deep – have 
learned us an interest in continuous representations of meaning:
• Offer a methodology to jointly process language and vision

• In this talk: how imagery helps in building richer meaning representations and integrate 
commonsense knowledge 

• More needs to be done:
• To fast parse language 
• To fast and incrementally learn
• To make compositions and inferences with the representations that we have learned
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